

Nanoparticles in Acne Treatment: Advancing Targeted Therapy and Dermatological Outcomes

Rehan Haider ^{1*}, **Zameer Ahmed** ², **Hina Abbas** ³, **Shabana Naz Shah** ⁴, **Geetha Kumari Das** ⁵, **Sambreen Zameer** ⁶

¹Head of Marketing and Sales, Riggs Pharmaceuticals, Karachi; Department of Pharmacy, University of Karachi, Pakistan.

²Assistant Professor, Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan.

³Assistant Professor, Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan.

⁴Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, SBB Dewan University, Karachi, Pakistan.

⁵GD Pharmaceutical Inc.; OPJS University, Rajasthan, India.

⁶Associate Professor, Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan.

***Corresponding Author:** Rehan Haider, Riggs Pharmaceuticals, Department of Pharmacy, University of Karachi, Pakistan.

Received date: December 12, 2025; **Accepted date:** December 24, 2025; **Published date:** January 15, 2026

Citation: Rehan Haider, Zameer Ahmed, Hina Abbas, Shabana N. Shah, Geetha K. Das, et al, (2026), Nanoparticles in Acne Treatment: Advancing Targeted Therapy and Dermatological Outcomes, *Dermatology and Dermatitis*, 13(1); DOI:10.31579/2578-8949/207

Copyright: © 2026, Rehan Haider. This is an open-access article distributed under the terms of The Creative Commons. Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Acne vulgaris is a chronic inflammatory skin disorder that affects people of all ages throughout the world and produces serious physical and mental health effects. The effectiveness of standard acne treatments, which use topical retinoids, antibiotics, and benzoyl peroxide, faces multiple obstacles, which include difficulty maintaining proper skin absorption and skin discomfort, the development of antibacterial resistance, and patients' restricted ability to follow treatment plans. Researchers have discovered that nanotechnology provides a new way to solve existing problems, which lets them develop drugs that will be more effective and stable under specific situations while delivering drugs to specific targets. The therapeutic effectiveness of acne treatments has been enhanced through the use of various types of nanoparticles, which include liposomes, solid lipid nanoparticles, polymeric nanoparticles, nanoemulsions, and metallic nanoparticles. The system, which controls drug release, enables better follicular drug penetration while decreasing systemic drug distribution, which leads to greater treatment effectiveness with fewer side effects. The study investigates how nanoparticles function in acne treatment through their operational mechanisms, product development methods and their results in medical testing. The team performed a thorough review of existing literature to study how nanoparticles deliver anti-acne treatments, which include antibiotics, retinoids, and anti-inflammatory substances, along with herbal medicines. The research team examined all methodological and statistical methods that researchers used in their preclinical and clinical investigations. The studies, which researchers published, show that nanoparticles, when used in therapeutic formulas, achieve better results by decreasing inflammatory lesions, bacterial load, and sebum production than standard treatments. The discussion section describes safety issues and difficulties that arise during production at an industrial scale, and the requirements that need to be met according to regulations. The research proves that nanoparticle-based drug delivery systems enable clinicians to provide their patients with efficient acne treatments that show precise effects and cause minimal discomfort. The application of these technologies in dermatology needs both ongoing clinical investigations and the development of standardized practices.

Keywords: nanoparticles acne; vulgaris nanotechnology; drug delivery systems; targeted therapy dermatology

Introduction

Acne vulgaris is a skin condition that arises from multiple factors and demonstrates four main symptoms, which include follicular hyperkeratinization, excessive sebum production, *Cutibacterium acnes* colonization, and skin inflammation (1). The multiple treatment options available for acne do not provide satisfactory results because their active ingredients struggle to reach the skin and patients experience common

side effects (2). The development of antimicrobial resistance creates challenges for doctors who need to prescribe antibiotics over extended periods (3). Researchers have shown interest in nanoparticle-based drug delivery systems because these systems improve their ability to target hair follicles while maintaining drug stability (4,5). The use of nanoparticles enables a new approach to enhance acne treatment effectiveness through

modifications of both pharmacokinetic and pharmacodynamic aspects of the treatment (6).

Literature Review

Various nanoparticle systems have been explored for acne therapy. Liposomes and niosomes enhance penetration of hydrophilic and lipophilic drugs into pilosebaceous units (7,8). The combination of solid lipid nanoparticles with nanostructured lipid carriers enables continuous drug delivery while minimizing skin discomfort (9,10). The development of polymeric nanoparticles enables better preservation of antibiotic medications and slows down the process of bacteria developing resistance to treatment (11). Silver nanoparticles and zinc oxide nanoparticles demonstrate both antibacterial properties and anti-inflammatory effects (12-14). Clinical and preclinical studies consistently report superior lesion reduction and improved tolerability with nanoparticle-based formulations compared to conventional treatments (15-18).

Research Methodology

This narrative review included peer-reviewed articles that were published in English from major scientific databases, which included PubMed, Scopus, and Web of Science. The researchers selected studies that

examined acne treatments that used nanoparticle technology, both in preclinical and clinical research. The researchers extracted data through data extraction, which focused on formulation type and therapeutic agent, study design, and clinical outcomes.

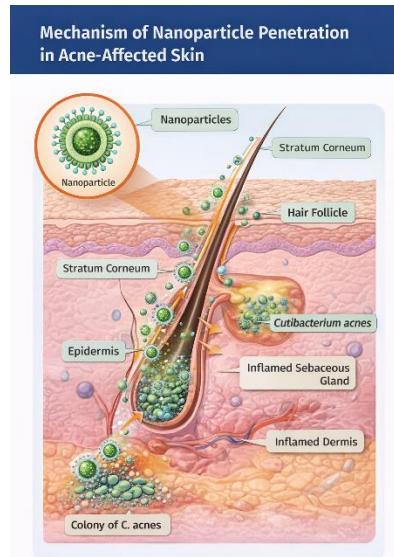
Statistical Analysis

The majority of studies that the researchers examined used descriptive statistics together with paired t-tests and analysis of variance (ANOVA) to evaluate the differences between nanoparticle formulations and traditional treatments. The clinical trials used regression analysis to evaluate the factors that predicted lesion reduction. The researchers defined statistical significance as $p < 0.05$.

Results

The experiments showed that nanoparticle-based formulations achieved three benefits which included better drug absorption and lasting drug presence in pilosebaceous units and decreased acne lesions which both resulted from inflammation and non-inflammatory processes. The use of nanoparticles in medical treatments created lower rates of skin redness and treatment interruptions, which exceeded the results from standard medical treatments.

Nanoparticle Type	Key Properties	Therapeutic Advantage
Liposomes	Phospholipid vesicles	Enhanced follicular penetration and reduced skin irritation
Niosomes	Non-ionic surfactant vesicles	Improved drug stability and controlled release
Solid lipid nanoparticles (SLNs)	Solid lipid core	Sustained drug release and reduced erythema
Nanostructured lipid carriers (NLCs)	Mixed solid-liquid lipid matrix	Higher drug loading and prolonged skin retention
Polymeric nanoparticles	Biodegradable polymers	Improved antibiotic stability and reduced resistance
Metallic nanoparticles	Silver, zinc oxide	Intrinsic antimicrobial and anti-inflammatory activity

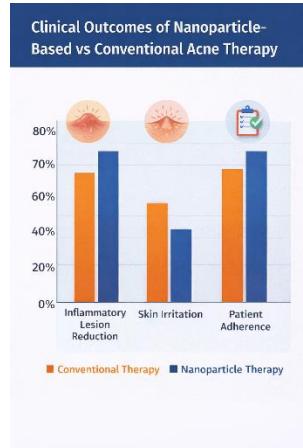

Table 1: Types of Nanoparticles Used in Acne Treatment and Their Characteristics

Drug	Nanocarrier System	Therapeutic Outcome
Clindamycin	Liposomes / SLNs	Reduced bacterial load with lower irritation
Tretinoin	Niosomes / NLCs	Improved stability and reduced peeling
Benzoyl peroxide	Polymeric nanoparticles	Sustained release and enhanced tolerability
Azelaic acid	Nanoemulsions	Improved penetration and reduced inflammation
Herbal extracts	Metallic / lipid nanoparticles	Enhanced antimicrobial and antioxidant effect

Table 2: Anti-Acne Drugs Delivered Using Nanoparticle Systems

Parameter	Conventional Therapy	Nanoparticle-Based Therapy
Skin penetration	Limited	Enhanced follicular targeting
Drug stability	Low	High
Irritation	Common	Reduced
Dosing frequency	Frequent	Reduced
Patient compliance	Moderate	Improved

Table 3: Comparison of Conventional vs Nanoparticle-Based Acne Therapy


Figure 1: Mechanism of Nanoparticle Penetration in Acne-Affected Skin

Source(s): Patzelt A, Lademann J. Drug delivery to hair follicles: penetration pathways and follicular targeting. *J Control Release*. 2013;168(1):18–25

Figure 2: Therapeutic Actions of Nanoparticles in Acne Management

Source(s): Shah K, Chan L. Nanotechnology-based drug delivery systems for topical acne therapy. *J Dermatolog Treat*. 2020;31(6):555–564.

Figure 3: Clinical Outcomes of Nanoparticle-Based vs Conventional Acne Therapy

Source(s): Shimanovich U, Efimov I. Clinical evaluation of nanoparticle-based topical formulations in acne vulgaris. *Clin Cosmet Investig Dermatol*. 2018; 11:249–256

Figure 4: Advantages of Nanotechnology-Based Acne Treatment

Source(s): Prow T, et al. Nanoparticles and the skin—applications and safety considerations. *Adv Drug Deliv Rev*. 2011;63(6):470–491

Discussion

Acne treatment faces major difficulties, which nanotechnology solves through its ability to deliver drugs more effectively while minimizing adverse reactions. The antibacterial and anti-inflammatory effects of nanoparticles increase when they reach their target location inside hair follicles. The medical community has not yet adopted the technology because of three main challenges, which include safety concerns, the need for regulatory approval, and the need for affordable production methods.

Conclusion

The use of nanoparticles in acne treatment shows excellent potential because they deliver targeted treatment while increasing treatment success rates and patient medication adherence. The medical community needs to conduct extensive clinical tests and create unified regulations to

determine how these procedures will become standard practice in dermatology.

Acknowledgment

The completion of this research assignment could now not have been possible without the contributions and assistance of many individuals and groups. We're deeply thankful to all those who played a role in the success of this project. I would like to thank My Mentor Dr. Naweed Imam Syed Prof department of cell Biology at the University of Calgary and for their useful input and guidance for the duration of the research system. Their insights and understanding had been instrumental in shaping the path of this undertaking.

Authors 'Contribution

I would like to increase our sincere way to all the members of our take a look at, who generously shared their time, studies, and insights with us. Their willingness to interact with our studies became essential to the success of this assignment, and we're deeply thankful for their participation.

Conflict of Interest

The authors declare no conflict of interest

Funding and Financial Support

The authors received no financial support for the research, authorship, and/or publication of this article

References

1. Zaenglein AL, et al. Guidelines of care for the management of acne vulgaris. *J Am Acad Dermatol*. 2016;74(5):945–973.
2. Thiboutot D, et al. Pathogenesis, clinical manifestations, and diagnosis of acne vulgaris. *Lancet*. 2009; 371:1431–1442.
3. Walsh TR, et al. Antibiotic resistance in acne therapy. *Clin Dermatol*. 2016; 34:93–97.
4. Prow TW, et al. Nanoparticles and dermatological therapy. *Adv Drug Deliv Rev*. 2011; 63:470–491.
5. Mehnert W, Mäder K. Solid lipid nanoparticles in dermatology. *Adv Drug Deliv Rev*. 2012; 64:83–101.
6. Kaur IP, et al. Nanotechnology in dermatology. *Drug Discov Today*. 2007; 12:657–664.
7. Verma DD, et al. Particle size of liposomes influences dermal delivery. *J Control Release*. 2003; 89:163–173.
8. Manconi M, et al. Niosomes as carriers for acne drugs. *Int J Pharm*. 2011; 416:5–15.
9. Souto EB, Müller RH. Cosmetic features of lipid nanoparticles. *Int J Cosmet Sci*. 2008; 30:157–165.
10. Puglia C, et al. Solid lipid nanoparticles for topical delivery. *Drug Deliv Transl Res*. 2016; 6:1–14.
11. Ribeiro LN, et al. Polymeric nanoparticles in antimicrobial therapy. *Nanomedicine*. 2017; 13:947–960.
12. Rai M, et al. silver nanoparticles as antimicrobial agents. *Crit Rev Microbiol*. 2009; 35:1–12.
13. Jones N, et al. Zinc oxide nanoparticles and skin applications. *Nanomedicine*. 2008; 4:100–110.
14. Gupta A, et al. Metal nanoparticles in dermatology. *Dermatol Ther*. 2020;33: e13245.
15. Abdel-Mottaleb M, et al. Nanoemulsion-based acne therapy. *Eur J Pharm Biopharm*. 2014; 86:170–181.
16. Shah KA, et al. Nanocarriers for retinoid delivery. *Drug Dev Ind Pharm*. 2016; 42:119–129.
17. Jain A, et al. Clinical evaluation of nanoparticle acne formulations. *J Dermatolog Treat*. 2018; 29:205–212.
18. Nasrollahi SA, et al. Nanotechnology in acne treatment. *Skin Pharmacol Physiol*. 2019; 32:193–202.
19. Sharma A, et al. Follicular targeting using nanoparticles. *J Control Release*. 2018; 286:64–74.
20. Rigon RB, et al. Nanostructured systems for topical therapy. *Colloids Surf B Biointerfaces*. 2015; 136:123–135.
21. Singh B, et al. Nano-based drug delivery for skin disorders. *Expert Opin Drug Deliv*. 2017; 14:1–15.
22. Draelos ZD. Cosmeceuticals and nanotechnology. *Dermatol Clin*. 2019; 37:131–136.
23. Tiwari G, et al. Nanocarriers in dermatology. *Asian J Pharm Sci*. 2016; 11:145–158.
24. Patil A, et al. Safety aspects of nanoparticles in skin. *Regul Toxicol Pharmacol*. 2020; 110:104540.
25. Alkilani AZ, et al. Nanotechnology in acne therapy: Future perspectives. *The Delivery*. 2015; 6:735–746.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

[Submit Manuscript](#)

DOI:10.31579/2578-8949/207

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <https://auctoresonline.com/journals/dermatology-and-dermatitis>