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Abstract

In this study, bifurcation analysis and multiobjective nonlinear model predictive control are performed on a transmission
model for respiratory syncytial virus. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear
dynamics of any process. Several factors must be considered, and multiple objectives must be met simultaneously. The
MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were
performed using the optimization language PYOMO in conjunction with the state-of-the-art global optimization solvers
IPOPT and BARON. The bifurcation analysis revealed the existence of branch points. The MNLMC converged to the
utopia solution. The branch points (which cause multiple steady-state solutions from a singular point) are very beneficial
because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point

(the best possible solution) in the model.
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Introduction

Respiratory Syncytial Virus (RSV) is one of the most significant causes of
acute lower respiratory infections, especially in infants, young children, the
elderly, and immunocompromised individuals. Its transmission dynamics,
high infectivity, and ability to cause recurrent infections make it a major
public health concern worldwide. Understanding the mechanisms and
conditions that facilitate RSV transmission is crucial for developing
preventive strategies, vaccines, and effective treatment plans. The
transmission of RSV involves a complex interplay between viral biology,
environmental factors, host immunity, and social behaviors that together
determine the spread and impact of the infection within communities.

RSV is an enveloped, single-stranded, negative-sense RNA virus belonging
to the Paramyxoviridae family and Pneumovirus genus. Its structural
proteins, particularly the fusion (F) and attachment (G) glycoproteins, play
critical roles in mediating viral entry into host cells and facilitating
transmission. The F protein allows the virus to fuse with the host cell
membrane, while the G protein mediates attachment to respiratory epithelial
cells. These surface proteins also enable RSV to spread directly between
adjacent cells through a process known as syncytium formation, in which
infected cells fuse with neighboring uninfected ones, creating large
multinucleated cells that enhance viral dissemination without exposure to the
extracellular environment. This mechanism allows the virus to evade some
components of the immune response and increases its efficiency of
transmission within the respiratory tract.

The primary route of RSV transmission is through direct or close contact
with infectious respiratory secretions. When an infected individual coughs,
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sneezes, or talks, virus-containing droplets are expelled into the air. These
droplets are generally large, typically greater than five micrometers in
diameter, and therefore do not remain airborne for long distances. As a result,
RSV transmission occurs mainly through short-range exposure, usually
within one to two meters of an infected person. The virus can enter a new
host through the mucous membranes of the eyes, nose, or mouth when these
droplets come into contact with them. In addition, RSV can survive for
several hours on environmental surfaces such as toys, doorknobs, tables, or
clothing, and for shorter periods on skin. Therefore, indirect contact, such as
touching contaminated surfaces and then touching one’s face, can also lead
to infection. This combination of direct and indirect contact transmission
makes RSV highly contagious, particularly in crowded or enclosed
environments.

RSV infection often occurs in seasonal patterns, typically peaking during the
winter months in temperate regions and during the rainy season in tropical
climates. Environmental conditions such as lower humidity, cooler
temperatures, and indoor crowding during these seasons contribute to
increased transmission. The virus can remain viable longer in cool and dry
conditions, while social behaviors such as spending more time indoors
enhance person-to-person contact. In hospitals, nurseries, and daycare
centers, outbreaks are particularly common, as young children and healthcare
workers serve as reservoirs and vectors for viral spread. Nosocomial, or
hospital-acquired, RSV infections can be severe and are a major concern in
neonatal and pediatric intensive care units. Strict hygiene measures,
including handwashing, surface disinfection, and the use of personal
protective equipment, are critical in such settings to prevent outbreaks.

Page 1 of 8



J. Women Health Care and Issues

The incubation period of RSV—the time between exposure and the
appearance of symptoms—is usually between two and eight days, with an
average of about four to six days. During this time, the virus replicates in the
epithelial cells of the upper respiratory tract, including the nasopharynx and
trachea. Once symptomatic, infected individuals shed large quantities of the
virus in nasal secretions, making them highly infectious. Viral shedding
typically lasts for three to eight days in healthy adults, but can persist for
several weeks in infants, the elderly, and immunocompromised individuals.
This prolonged shedding in vulnerable populations significantly enhances
the opportunity for community transmission and recurrent infections.

RSV transmission is particularly efficient in households with young children,
who often serve as the initial point of infection. Infants and toddlers,
especially those attending daycare, are exposed to multiple viral contacts and
are more likely to transmit RSV to siblings, parents, and grandparents. In
these settings, asymptomatic or mildly symptomatic carriers can still spread
the virus effectively. Adults, who may experience only mild cold-like
symptoms, often act as silent reservoirs of infection. Because immunity
following RSV infection is incomplete and short-lived, reinfections occur
throughout life, enabling the virus to circulate persistently in human
populations.

Host factors also play a significant role in RSV transmission and disease
severity. Infants younger than six months are at the highest risk for severe
infection due to their underdeveloped immune systems and smaller airways.
Premature infants, or those with underlying conditions such as congenital
heart disease, chronic lung disease, or immune deficiencies, are particularly
susceptible. The immaturity of the infant immune system limits the
production of neutralizing antibodies and effective T-cell responses,
allowing more extensive viral replication and higher viral loads, which in
turn increase transmissibility. The role of maternal antibodies is also
important, as they provide partial protection in the first months of life, but
this protection wanes rapidly, leaving infants vulnerable during the peak
season for RSV transmission.

From a public health perspective, RSV transmission is challenging to control
because it combines high infectivity with a lack of durable immunity. There
is currently no fully licensed vaccine for RSV, though several candidates are
in late-stage development, including maternal vaccines and monoclonal
antibody-based prophylaxis for infants. Until these measures become widely
available, non-pharmaceutical interventions remain the mainstay of
prevention. These include frequent hand hygiene, avoiding close contact
with sick individuals, cleaning surfaces and toys, and limiting exposure of
infants to crowded places during RSV season. In healthcare settings,
infection control protocols such as isolating infected patients, wearing gloves
and masks, and enforcing strict hygiene procedures can significantly reduce
transmission rates.

The introduction of monoclonal antibody prophylaxis, such as palivizumab,
has provided partial protection for high-risk infants, reducing hospitalization
rates but not completely preventing infection or transmission. Newer long-
acting antibodies, like nirsevimab, have shown promise in extending
protection for a full RSV season, potentially changing the epidemiology of
transmission in infants once widely implemented. Similarly, maternal
immunization strategies—where pregnant women are vaccinated to pass
antibodies to their newborns—offer a promising approach to reduce early-
life infection and viral spread in households.

In addition to individual preventive measures, understanding population-
level transmission dynamics is essential. Mathematical modeling of RSV
transmission indicates that community outbreaks are driven by a
combination of seasonal factors, contact rates among children, and waning
immunity. Public health surveillance helps identify the onset and intensity of
RSV seasons, enabling hospitals and healthcare systems to prepare for
increased admissions and implement preventive actions. School and daycare
closures, though effective in reducing transmission during pandemics, are
less feasible for RSV due to its annual recurrence and mild disease course in
older children.
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The transmission of Respiratory Syncytial Virus reflects the complex
interactions between viral biology, human behavior, environmental factors,
and host immunity. RSV spreads primarily through close contact with
respiratory secretions and contaminated surfaces, thriving in settings where
people, especially children, interact closely. Seasonal trends and the presence
of prolonged viral shedding in vulnerable populations make control efforts
difficult. Despite the absence of a universal vaccine, progress in monoclonal
antibody therapies and maternal immunization holds promise for reducing
both infection and transmission in the near future. Until such measures
become broadly accessible, strict hygiene practices, public awareness, and
early detection remain the most effective tools in limiting RSV spread.
Understanding the mechanisms of RSV transmission not only informs
prevention strategies but also underscores the importance of continued
research into vaccines and antiviral therapies to combat one of the most
persistent respiratory pathogens affecting humanity.

Falsey et al (2000) [1] studied the respiratory syncytial virus infection in
adults. Hall (2001) [2] investigated the connection between the respiratory
syncytial virus and parainfluenza virus. White et al (2007) [3] provided an
understanding of the transmission dynamics of respiratory syncytial virus
using multiple time series and nested models. Sungchasit et al (2022) [4],
performed mathematical modeling and global stability analysis of super-
spreading transmission of respiratory syncytial virus (RSV) disease. Kaler
et al (2023) [5] provided a comprehensive review of the transmission,
pathophysiology, and manifestation of the respiratory syncytial virus. Rosa
et al (2023) [6] performed numerical fractional optimal control calculations
of the respiratory syncytial virus infection. Abdullahi and Sule (2023) [7]
developed a non-integer mathematical model of the respiratory syncytial
virus. Jamil et al (2024) [8] performed qualitative analysis and chaotic
behavior of respiratory syncytial virus infection in humans with a fractional
operator. Awadalla et al (2024) [9] performed a fractional optimal control
model and bifurcation calculations of human syncytial respiratory virus
transmission dynamics. Al Ajlan et al (2025[10] performed mathematical
Analysis and optimal control calculations of a transmission model for
respiratory syncytial virus.

In this work, bifurcation analysis and multiobjective nonlinear model
predictive control is performed on a transmission model for respiratory
syncytial virus (Al Ajlan et al (2025[10]). The paper is organized as follows.
First, the model equations are presented, followed by a discussion of the
numerical techniques involving bifurcation analysis and multiobjective
nonlinear model predictive control (MNLMPC). The results and discussion
are then presented, followed by the conclusions.

Model Equations (Al Ajlan et al, 2025 [10])

The variables sv, ev, z1, z2, rv represent susceptible, exposed, acutely
infected, chronically infected, and recovered populations. The control and
bifurcation parameters ul, u2, and u3 represent the isolation of infected
individuals, the treatment of infected

individuals, and the vaccination of susceptible individuals. The parameters
A, BL B2, 1, ao,n, p,y1, y2  take on values 0.1, 0.1,0.1, 0.03622,

0.1, 6, 0.3,0.01, 0.1, and stand for the constant birth rate within the human
population, the transmission rate of strain one, the transmission rate of strain
two, the death rate of the human population, the rate of mutation of the virus
from strain one to strain two, the incubation time of respiratory syncytial
virus, the probability that strain one will infect a new case, the rate at which
individuals infected with strain one recover, the rate at which individuals
infected with strain two recover.

The model equations are
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facl= B1(z1)sv(1-ul)
fac2 = 2(z2)sv(1-ul)
d(sv)=A- facl- fac2—sv(u+u3)

d(ev)= facl+ fac2—ev[£+,u+u3j
n

d(z1) =£ev—zl(a)+7/1+,u+u2)
n

d(z2)=ev 1-r) +o(z1) - 22(y2+ u+u2)
n

d(rv)=yA(z1) + y2(z2) - p(rv) +u3(sv+ev)+u2(zl+z2)

Bifurcation Analysis

The MATLAB software MATCONT is used to perform the bifurcation
calculations. Bifurcation analysis deals with multiple steady-states and limit
cycles. Multiple steady states occur because of the existence of branch and
limit points. Hopf bifurcation points cause limit cycles. A commonly used
MATLAB program that locates limit points, branch points, and Hopf
bifurcation points is MATCONT (Dhooge, Govaerts, and Kuznetsov,
2003[11]; Dhooge, Govaerts, Kuznetsov, Mestrom and  Riet, 2004[12]).
This program detects Limit points (LP), branch points (BP), and Hopf
bifurcation points(H) for an ODE system

dx
— = f(x,
pm (X, @)

X € R" Let the bifurcation parameter be ¢ . Since the gradient is
orthogonal to the tangent vector,

The tangent plane at any point W= [Wl’ Wva3vW41""Wn+1] must
satisfy

Aw=0

Where A'is

A=[of /0x |of 16a]

where Of / OX is the Jacobian matrix. For both limit and branch points,

the Jacobian matrix J =[of / Ox] must be singular.

For a limit point, there is only one tangent at the point of singularity. At this
singular point, there is a single non-zero vector, y, where Jy=0. This vector
is of dimension n. Since there is only one tangent the vector

y= (y1’ Y21 Y3 y4""yn)

W= (W, W,, W;, W,,...W,) . Since

must align with

JWw=Aw=0

the n+1 ™ component of the tangent vector Wn+1 =0 at a limit point (LP).

For a branch point, there must exist two tangents at the singularity. Let the
two tangents be z and w. This implies that

Az=0
Aw=0
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Consider a vector v that is orthogonal to one of the tangents (say w). v can
be expressed as a linear combination of z and w (V=&Z +,BW). Since

Az =Aw=0 ; Av =0 and since w and v are orthogonal,

W'V =0.Hence Bv = Vv = 0 which implies that B is singular.

WT

A
Hence, for a branch point (BP) the matrix B = { . } must be singular.

w

At a Hopf bifurcation point,

det(2 1 (x,2)@1 ) =0

@ Indicates the bialternate product while | is the n-square identity

matrix. Hopf bifurcations cause limit cycles and should be eliminated
because limit cycles make optimization and control tasks very difficult.
More details can be found in Kuznetsov (1998[13]; 2009[14]) and
Govaerts [2000] [15].

Multiobjective Nonlinear Model Predictive Control (MNLMPC)

The rigorous multiobjective nonlinear model predictive control
(MNLMPC) method developed by Flores Tlacuahuaz et al (2012) [16]
was used.

=t
Consider a problem where the variables Z d; (t;) (=1, 2.n) have

t|=O
to be optimized simultaneously for a dynamic problem
dx
— =F(x,u)
dt

tf being the final time value, and n the total number of objective

variables and u the control parameter.  The single objective optimal
control problem is solved individually optimizing each of the variables
ti=t; ti=t;

z qj (ti) The optimization of Z qj (ti) will lead to the

tio tig

values ( j Then, the multiobjective optimal control (MOOC)

problem that will be solved is
n o ti=tg
min(®_ (2 a;(t)—a;))?

=1t
subject to % = F(x,u);

This will provide the values of u at various times. The first obtained
control value of u is implemented and the rest are discarded. This
procedure is repeated until the implemented and the first obtained
control values are the same or if the Utopia point where

=ty

( Z 0; () =0 forallj)is obtained.

tico

Pyomo (Hart et al, 2017) [17] is used for these calculations. Here, the
differential equations are converted to a Nonlinear Program (NLP) using the
orthogonal collocation method The NLP is solved using IPOPT (Wéchter
And Biegler, 2006) [18]and confirmed as a global solution with BARON
(Tawarmalani, M. and N. V. Sahinidis 2005) [19].
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The steps of the algorithm are as follows
t=t;

Optimize qu(ti) and obtain QT

1
tio
n L=t
2. Minimize (Z(ij(ti)_qj))z and get the control values at
=ty

various times.

3. Implement the first obtained control values

4. Repeat steps 1 to 3 until there is an insignificant difference between the
implemented and the first obtained value of the control variables or if
the Utopia point is achieved. The Utopia point is when
t=t;

Z Q; (ti) = qj for all j.
tig

Sridhar (2024) [20] demonstrated that when the bifurcation analysis
revealed the presence of limit and branch points the MNLMPC calculations
to converge to the Utopia solution. For this, the singularity condition, caused
by the presence of the limit or branch points was imposed on the co-state

equation (Upreti, 2013) [21]. If the minimization of ql lead to the value
ql and the minimization of qz lead to the value q2 The MNLPMC

*\2 *\2
calculations will minimize the function (ql—ql) +(q2 —qz) . The

multiobjective optimal control problem is

min  (g,—q,)*+(g,—0,)* subjectto % =F(x,u)
function results in

Differentiating the objective

d x N « d " « d .
&((ql_ql)z +(q2 _qz)z) :Z(ql_ql)&(ql_ql)+2(q2 _qz)&(qz _qz)

Copy rights@ Lakshmi. N. Sridhar,

The Utopia point requires that both (ql - ql) and (q2 - qz) are zero.

Hence
d * 2 * 2 _ O
_((ql_ql) "’(qz _qz) ) =
dx,
The optimal control co-state equation (Upreti; 2013) [43] is

d d *\2 *\2 . _
G A= (@0 @@ 1A A)=0

j’i is the Lagrangian multiplier. tf is the final time. The first term in this

equation is 0 and hence

d y__¢,. _
G = hAA) =0

At a limit or a branch point, for the set of ODES % = f(x,u) fX is
t

singular. Hence there are two different vectors-values for [ﬂ',] where
%(ﬂ,,) >0 and %(ﬂ,l) <0 . In between there is a vector [/11] where

di(il) =0 . This coupled with the boundary condition i, (tf ) =0 will
t
lead to [/1,] :O This makes the problem an unconstrained optimization

problem, and the optimal solution is the Utopia solution.
Results and Discussion

ul, u2 and u3 were used as bifurcation parameters and each one of them
produced branch points. When ul was the bifurcation parameter, a branch
point was found at (sv, ev, z1, z2, rv, ul) values of (2.760906, 0, 0, 0, 0,
0.493006) (Figure. 1a).

Bifurcation (u1)

BP

1 1 1 1

1 1 1 |

-1.5 -1 -0.5 0

1 1.5 2 25

Figure 1a: ul is the bifurcation parameter

When u2 was the bifurcation parameter, a branch point was found at (sv, ev,
z1, 22, rv, u2) values of (2.760906, 0, 0, 0, 0, 0.114105)(Figure. 1b). When
u3 was the bifurcation parameter, a branch point was found at (sv, ev, z1, z2,
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rv, u3) values of (1.585122, 0, 0, 0, 1.175784, 0.026867) (Figure. 1c). These
results indicate that the introduction of control parameters cause branch point
bifurcations to appear.
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For the MNLMPC, ul,

u u3 are
t=t; t=t;

Bifurcation (u2)
457
4 |-
35
3 |-
BP
>
]
25
2 |-
15
1 1 1 1 1
1.5 -1 0 0.5 1
u2
Figure 1b: u2 is the bifurcation parameter
Bifurcation (u3)
40
'|II //,
25} \
] 7
\
L -~
A -
2+ \ g
\BE~
@15 '\
1k
~__

0.5 \
0 . . . .
0.05 0 0.05 0.1 0.15 0.2

uld
Figure 1c: u3 is the bifurcation parameter
the control

tizo tico

value of 0. The overall optimal control problem will involve the
t=t¢

minimization of (Z Z1(t,) —0)* + (Z z2(t.) —0)?was minimized

t=t;

tico tico
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parameters,
> 7A(), D z2(t;) were minimized individually, and each led to a

and

subject to the equations governing the model. This led to a value of zero (the
Utopia point). The MNLMPC values of the control variables, ul, u2, and u3
were 0.4992, 0.32099, and 0.06119. The MNLMPC profiles are shown in
Figures 2a-2d. The control profiles of ul, u2, and u3 exhibited noise (Fig.
2¢) and this was remedied using the Savitzky-Golay filter to produce the

smooth profiles ulsg, u2sg, and u3sg (Figure. 2d). The presence of the
branch points causes the MNLMPC calculations to attain the Utopia solution,

validating the analysis of Sridhar (2024) [20].
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2.0

1.5

— sV
1.0 — eV
—_ v

0.51

0.0

10 15 20
t

Figure 2a: MNLMPC sv ev rv profiles

=_
o

0.2 z1
— Zz2
0.1 1
0.0 | . . .
0 5 10 15 20
t
Figure 2b: MNLMPC z1 z2 profiles
1.00
— uf
0.75- u2
u3
0.50
0.25 1
0.00' T T T T T
0 5 10 15 20

t

Figure 2c: MNLMPC ul u2 u3 profiles
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1.00 1
— ulsg
0.75. u2sg
—— ulsg
050 — __ —] —
0.251
0 5 10 15 20

t

Figure 2d: MNLMPC ulsg u2sg u3sg profiles

Conclusions

Bifurcation analysis and multiobjective nonlinear control (MNLMPC)
studies on a transmission model for respiratory syncytial virus. The
bifurcation analysis revealed the existence of branch points. These branch
points (which cause multiple steady-state solutions from a singular point) are
very beneficial because they enable the Multiobjective nonlinear model
predictive control calculations to converge to the Utopia point (the best
possible solution) in the models. A combination of bifurcation analysis and
Multiobjective Nonlinear Model Predictive Control (MNLMPC) on a
transmission model for respiratory syncytial virusis the main contribution of
this paper.
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