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Abstract  

In this study, bifurcation analysis and multiobjective nonlinear model predictive control are performed on a transmission 

model for respiratory syncytial virus. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear 

dynamics of any process. Several factors must be considered, and multiple objectives must be met simultaneously.  The 

MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were 

performed using the optimization language PYOMO   in conjunction with the state-of-the-art global optimization solvers 

IPOPT and BARON. The bifurcation analysis revealed the existence of branch points. The MNLMC converged to the 

utopia solution. The branch points (which cause multiple steady-state solutions from a singular point) are very beneficial 

because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point 

(the best possible solution) in the model.  
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Introduction 

Respiratory Syncytial Virus (RSV) is one of the most significant causes of 

acute lower respiratory infections, especially in infants, young children, the 

elderly, and immunocompromised individuals. Its transmission dynamics, 

high infectivity, and ability to cause recurrent infections make it a major 

public health concern worldwide. Understanding the mechanisms and 

conditions that facilitate RSV transmission is crucial for developing 

preventive strategies, vaccines, and effective treatment plans. The 

transmission of RSV involves a complex interplay between viral biology, 

environmental factors, host immunity, and social behaviors that together 

determine the spread and impact of the infection within communities. 

RSV is an enveloped, single-stranded, negative-sense RNA virus belonging 

to the Paramyxoviridae family and Pneumovirus genus. Its structural 

proteins, particularly the fusion (F) and attachment (G) glycoproteins, play 

critical roles in mediating viral entry into host cells and facilitating 

transmission. The F protein allows the virus to fuse with the host cell 

membrane, while the G protein mediates attachment to respiratory epithelial 

cells. These surface proteins also enable RSV to spread directly between 

adjacent cells through a process known as syncytium formation, in which 

infected cells fuse with neighboring uninfected ones, creating large 

multinucleated cells that enhance viral dissemination without exposure to the 

extracellular environment. This mechanism allows the virus to evade some 

components of the immune response and increases its efficiency of 

transmission within the respiratory tract. 

The primary route of RSV transmission is through direct or close contact 

with infectious respiratory secretions. When an infected individual coughs, 

sneezes, or talks, virus-containing droplets are expelled into the air. These 

droplets are generally large, typically greater than five micrometers in 

diameter, and therefore do not remain airborne for long distances. As a result, 

RSV transmission occurs mainly through short-range exposure, usually 

within one to two meters of an infected person. The virus can enter a new 

host through the mucous membranes of the eyes, nose, or mouth when these 

droplets come into contact with them. In addition, RSV can survive for 

several hours on environmental surfaces such as toys, doorknobs, tables, or 

clothing, and for shorter periods on skin. Therefore, indirect contact, such as 

touching contaminated surfaces and then touching one’s face, can also lead 

to infection. This combination of direct and indirect contact transmission 

makes RSV highly contagious, particularly in crowded or enclosed 

environments. 

RSV infection often occurs in seasonal patterns, typically peaking during the 

winter months in temperate regions and during the rainy season in tropical 

climates. Environmental conditions such as lower humidity, cooler 

temperatures, and indoor crowding during these seasons contribute to 

increased transmission. The virus can remain viable longer in cool and dry 

conditions, while social behaviors such as spending more time indoors 

enhance person-to-person contact. In hospitals, nurseries, and daycare 

centers, outbreaks are particularly common, as young children and healthcare 

workers serve as reservoirs and vectors for viral spread. Nosocomial, or 

hospital-acquired, RSV infections can be severe and are a major concern in 

neonatal and pediatric intensive care units. Strict hygiene measures, 

including handwashing, surface disinfection, and the use of personal 

protective equipment, are critical in such settings to prevent outbreaks. 

  Open Access  Review Article 

       Journal of Women Health Care and Issues 
                                                                       Lakshmi. N. Sridhar*                                                                                                                                                        

AUCTORES 
Globalize your   Research 



J. Women Health Care and Issues                                                                                                                                                                 Copy rights@ Lakshmi. N. Sridhar, 

Auctores Publishing LLC – Volume 9(1)-255 www.auctoresonline.com  
ISSN: 2642-9756   Page 2 of 8 

The incubation period of RSV—the time between exposure and the 

appearance of symptoms—is usually between two and eight days, with an 

average of about four to six days. During this time, the virus replicates in the 

epithelial cells of the upper respiratory tract, including the nasopharynx and 

trachea. Once symptomatic, infected individuals shed large quantities of the 

virus in nasal secretions, making them highly infectious. Viral shedding 

typically lasts for three to eight days in healthy adults, but can persist for 

several weeks in infants, the elderly, and immunocompromised individuals. 

This prolonged shedding in vulnerable populations significantly enhances 

the opportunity for community transmission and recurrent infections. 

RSV transmission is particularly efficient in households with young children, 

who often serve as the initial point of infection. Infants and toddlers, 

especially those attending daycare, are exposed to multiple viral contacts and 

are more likely to transmit RSV to siblings, parents, and grandparents. In 

these settings, asymptomatic or mildly symptomatic carriers can still spread 

the virus effectively. Adults, who may experience only mild cold-like 

symptoms, often act as silent reservoirs of infection. Because immunity 

following RSV infection is incomplete and short-lived, reinfections occur 

throughout life, enabling the virus to circulate persistently in human 

populations. 

Host factors also play a significant role in RSV transmission and disease 

severity. Infants younger than six months are at the highest risk for severe 

infection due to their underdeveloped immune systems and smaller airways. 

Premature infants, or those with underlying conditions such as congenital 

heart disease, chronic lung disease, or immune deficiencies, are particularly 

susceptible. The immaturity of the infant immune system limits the 

production of neutralizing antibodies and effective T-cell responses, 

allowing more extensive viral replication and higher viral loads, which in 

turn increase transmissibility. The role of maternal antibodies is also 

important, as they provide partial protection in the first months of life, but 

this protection wanes rapidly, leaving infants vulnerable during the peak 

season for RSV transmission. 

From a public health perspective, RSV transmission is challenging to control 

because it combines high infectivity with a lack of durable immunity. There 

is currently no fully licensed vaccine for RSV, though several candidates are 

in late-stage development, including maternal vaccines and monoclonal 

antibody-based prophylaxis for infants. Until these measures become widely 

available, non-pharmaceutical interventions remain the mainstay of 

prevention. These include frequent hand hygiene, avoiding close contact 

with sick individuals, cleaning surfaces and toys, and limiting exposure of 

infants to crowded places during RSV season. In healthcare settings, 

infection control protocols such as isolating infected patients, wearing gloves 

and masks, and enforcing strict hygiene procedures can significantly reduce 

transmission rates. 

The introduction of monoclonal antibody prophylaxis, such as palivizumab, 

has provided partial protection for high-risk infants, reducing hospitalization 

rates but not completely preventing infection or transmission. Newer long-

acting antibodies, like nirsevimab, have shown promise in extending 

protection for a full RSV season, potentially changing the epidemiology of 

transmission in infants once widely implemented. Similarly, maternal 

immunization strategies—where pregnant women are vaccinated to pass 

antibodies to their newborns—offer a promising approach to reduce early-

life infection and viral spread in households. 

In addition to individual preventive measures, understanding population-

level transmission dynamics is essential. Mathematical modeling of RSV 

transmission indicates that community outbreaks are driven by a 

combination of seasonal factors, contact rates among children, and waning 

immunity. Public health surveillance helps identify the onset and intensity of 

RSV seasons, enabling hospitals and healthcare systems to prepare for 

increased admissions and implement preventive actions. School and daycare 

closures, though effective in reducing transmission during pandemics, are 

less feasible for RSV due to its annual recurrence and mild disease course in 

older children. 

The transmission of Respiratory Syncytial Virus reflects the complex 

interactions between viral biology, human behavior, environmental factors, 

and host immunity. RSV spreads primarily through close contact with 

respiratory secretions and contaminated surfaces, thriving in settings where 

people, especially children, interact closely. Seasonal trends and the presence 

of prolonged viral shedding in vulnerable populations make control efforts 

difficult. Despite the absence of a universal vaccine, progress in monoclonal 

antibody therapies and maternal immunization holds promise for reducing 

both infection and transmission in the near future. Until such measures 

become broadly accessible, strict hygiene practices, public awareness, and 

early detection remain the most effective tools in limiting RSV spread. 

Understanding the mechanisms of RSV transmission not only informs 

prevention strategies but also underscores the importance of continued 

research into vaccines and antiviral therapies to combat one of the most 

persistent respiratory pathogens affecting humanity. 

Falsey et al (2000) [1] studied the respiratory syncytial virus infection in 

adults.  Hall (2001) [2] investigated the connection between the respiratory 

syncytial virus and parainfluenza virus.  White et al (2007) [3] provided an 

understanding of the transmission dynamics of respiratory syncytial virus 

using multiple time series and nested models.  Sungchasit et al (2022) [4], 

performed mathematical modeling and global stability analysis of super-

spreading transmission of respiratory syncytial virus (RSV) disease.  Kaler 

et al (2023) [5] provided a comprehensive review of the transmission, 

pathophysiology, and manifestation of the respiratory syncytial virus. Rosa 

et al (2023) [6] performed numerical fractional optimal control calculations 

of the respiratory syncytial virus infection.  Abdullahi and Sule (2023) [7] 

developed a non-integer mathematical model of the respiratory syncytial 

virus.  Jamil et al (2024) [8] performed qualitative analysis and chaotic 

behavior of respiratory syncytial virus infection in humans with a fractional 

operator.  Awadalla et al (2024) [9] performed a fractional optimal control 

model and bifurcation calculations of human syncytial respiratory virus 

transmission dynamics. Al Ajlan et al (2025[10] performed mathematical 

Analysis and optimal control calculations of a transmission model for 

respiratory syncytial virus.  

In this work, bifurcation analysis and multiobjective nonlinear model 

predictive control is performed on a transmission model for respiratory 

syncytial virus (Al Ajlan et al (2025[10]). The paper is organized as follows. 

First, the model equations are presented, followed by a discussion of the 

numerical techniques involving bifurcation analysis and multiobjective 

nonlinear model predictive control (MNLMPC). The results and discussion 

are then presented, followed by the conclusions.  

Model Equations (Al Ajlan et al, 2025 [10]) 

The variables sv, ev, z1, z2, rv represent susceptible, exposed, acutely 

infected, chronically infected, and recovered populations. The control and 

bifurcation parameters u1, u2, and u3 represent the isolation of infected 

individuals, the treatment of infected 

individuals, and the vaccination of susceptible individuals. The parameters

, 1, 2, , , , , 1, 2           take on values 0.1, 0.1,0.1,  0.03622, 

0.1, 6, 0.3, 0.01, 0.1, and stand for  the constant birth rate within the human 

population, the transmission rate of strain one, the transmission rate of strain 

two, the death rate of the human population, the rate of mutation of the virus 

from strain one to strain two, the incubation time of respiratory syncytial 

virus, the probability that strain one will infect a new case, the rate at which 

individuals infected with strain one recover, the rate at which individuals 

infected with strain two recover. 

The model equations are  
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Bifurcation Analysis  

The MATLAB software MATCONT is used to perform the bifurcation 

calculations. Bifurcation analysis deals with multiple steady-states and limit 

cycles.  Multiple steady states occur because of the existence of branch and 

limit points.  Hopf bifurcation points cause limit cycles.  A commonly used 

MATLAB program that locates limit points, branch points, and Hopf 

bifurcation points is MATCONT (Dhooge, Govaerts, and Kuznetsov, 

2003[11]; Dhooge, Govaerts, Kuznetsov, Mestrom and   Riet, 2004[12]).  

This program detects Limit points (LP), branch points (BP), and Hopf 

bifurcation points(H) for an ODE system  

( , )
dx

f x
dt

=    

nx R  Let the bifurcation parameter be   . Since the gradient is 

orthogonal to the tangent vector,   

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    must 

satisfy  

0Aw =    

Where A is  

[ / | / ]A f x f =       

where  /f x   is the Jacobian matrix.  For both limit and branch points, 

the Jacobian matrix  [ / ]J f x=     must be singular.   

For a limit point, there is only one tangent at the point of singularity. At this 

singular point, there is a single non-zero vector, y, where Jy=0. This vector 

is of dimension n. Since there is only one tangent the vector 

1 2 3 4( , , , ,... )ny y y y y y=  must align with  

1 2 3 4
ˆ ( , , , ,... )nw w w w w w=  . Since  

ˆ 0Jw Aw= =    

 the n+1 th component of the tangent vector 1nw +  = 0 at a limit point (LP).  

For a branch point, there must exist two tangents at the singularity. Let the 

two tangents be z and w.  This implies that  

0

0

Az

Aw

=

=
  

Consider a vector v that is orthogonal to one of the tangents (say w). v can 

be expressed as a linear combination of z and w ( v z w = + ). Since 

0Az Aw= =  ; 0Av =  and since w and v are orthogonal,  

0Tw v = . Hence 0
T

A
Bv v

w

 
= = 
 

 which implies that B is singular.  

Hence, for a branch point (BP) the matrix 
T

A
B

w

 
=  
 

 must be singular.  

At a Hopf bifurcation point,  

det(2 ( , )@ ) 0x nf x I =  

@ Indicates the bialternate product while 
nI  is the n-square identity 

matrix. Hopf bifurcations cause limit cycles and should be eliminated 

because limit cycles make optimization and control tasks very difficult.  

More details can be found in Kuznetsov (1998[13]; 2009[14]) and 

Govaerts [2000] [15]. 

Multiobjective Nonlinear Model Predictive Control (MNLMPC)  

The rigorous multiobjective nonlinear model predictive control 

(MNLMPC) method developed by Flores Tlacuahuaz et al (2012) [16] 

was used.  

 Consider a problem where the variables  

0

( )
i f

i

t t

j i

t

q t
=

=

 (j=1, 2.n) have 

to be optimized simultaneously for a dynamic problem    

( , )
dx

F x u
dt

=         

 ft  being the final time value, and n the total number of objective 

variables and u the control parameter.     The single objective optimal 

control problem is solved individually optimizing each of the variables 

0
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t
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    The optimization of 

0

( )
i f

i

t t

j i

t

q t
=

=

  will lead to the 

values 
*

jq   .  Then, the multiobjective optimal control (MOOC) 

problem that will be solved is  

0

* 2

1

min( ( ( ) ))

( , );

i f

i

t tn

j i j

j t

q t q

dx
subject to F x u

dt

=

=

=

−

=

 
      

This will provide the values of u at various times. The first obtained 

control value of u is implemented and the rest are discarded. This 

procedure is repeated until the implemented and the first obtained 

control values are the same or if the Utopia point where  

( 

0

*( )
i f

i

t t

j i j

t

q t q
=

=

=  for all j) is obtained.  

Pyomo (Hart et al, 2017) [17] is used for these calculations.  Here, the 

differential equations are converted to a Nonlinear Program (NLP) using the 

orthogonal collocation method   The NLP is solved using IPOPT (Wächter 

And Biegler, 2006) [18]and confirmed as a global solution with BARON 

(Tawarmalani, M. and N. V. Sahinidis 2005) [19].  
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  The steps of the algorithm are as follows   

1. Optimize 

0

( )
i f

i

t t

j i

t

q t
=

=

  and obtain 
*

jq . 

2. Minimize 

0

* 2

1

( ( ( ) ))
i f

i

t tn

j i j

j t

q t q
=

=

=

−  and get the control values at 

various times. 

3. Implement the first obtained control values  

4. Repeat steps 1 to 3 until there is an insignificant difference between the 

implemented and the first obtained value of the control variables or if 

the Utopia point is achieved. The Utopia point is when 

0

*( )
i f

i

t t

j i j

t

q t q
=

=

=  for all j.  

 Sridhar (2024) [20] demonstrated that when the bifurcation analysis 

revealed the presence of limit and branch points the MNLMPC calculations 

to converge to the Utopia solution.  For this, the singularity condition, caused 

by the presence of the limit or branch points was imposed on the co-state 

equation (Upreti, 2013) [21].   If the minimization  of   1q  lead to the value 

*

1q  and the minimization of 2q  lead to the value 
*

2q   The MNLPMC 

calculations will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The 

multiobjective optimal control problem is

* 2 * 2

1 1 2 2min ( ) ( ) ( , )
dx

q q q q subject to F x u
dt

− + − =
 

Differentiating the objective function results in 

 

* 2 * 2 * * * *

1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )
i i i

d d d
q q q q q q q q q q q q

dx dx dx
− + − = − − + − −  

The Utopia point requires that both 
*

1 1( )q q−  and 
*

2 2( )q q−  are zero.  

Hence   

* 2 * 2

1 1 2 2(( ) ( ) ) 0
i

d
q q q q

dx
− + − =    

The optimal control co-state equation (Upreti; 2013) [43] is  

* 2 * 2

1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d
q q q q f t

dt dx
  = − − + − − =   

i  is the Lagrangian multiplier. ft  is the final time.  The first term in this 

equation is 0 and hence  

( ) ; ( ) 0i x i i f

d
f t

dt
  = − =   

At a limit or a branch point, for the set of ODES ( , )
dx

f x u
dt

=  xf  is 

singular. Hence there are two different vectors-values for [ ]i  where 

( ) 0i

d

dt
   and ( ) 0i

d

dt
   . In between there is a vector [ ]i  where 

( ) 0i

d

dt
 =  . This coupled with the boundary condition ( ) 0i ft =  will 

lead to  [ ] 0i =  This makes the problem an unconstrained optimization 

problem, and the optimal solution is the Utopia solution.   

Results and Discussion 

u1, u2 and u3 were used as bifurcation parameters and each one of them 

produced branch points. When u1 was the bifurcation parameter, a branch 

point was found at (sv, ev, z1, z2, rv, u1) values of (2.760906, 0, 0, 0, 0, 

0.493006) (Figure. 1a). 

 
Figure 1a: u1 is the bifurcation parameter 

When u2 was the bifurcation parameter, a branch point was found at (sv, ev, 

z1, z2, rv, u2) values of (2.760906, 0, 0, 0, 0, 0.114105)(Figure. 1b). When 

u3 was the bifurcation parameter, a branch point was found at (sv, ev, z1, z2, 

rv, u3) values of (1.585122, 0, 0, 0, 1.175784, 0.026867) (Figure. 1c). These 

results indicate that the introduction of control parameters cause branch point 

bifurcations to appear.  
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Figure 1b: u2 is the bifurcation parameter 

 

Figure 1c: u3 is the bifurcation parameter 

For the MNLMPC, u1, u u3 are the control parameters, and 

0 0

1( ), 2( )
i f i f

i i

t t t t

i i

t t

z t z t
= =

= =

   were minimized individually, and each led to a 

value of 0. The overall optimal control problem will involve the 

minimization of 

0 0

2 2( 1( ) 0) ( 2( ) 0)
i f i f

i i

t t t t

i i

t t

z t z t
= =

= =

− + −  was minimized  

subject to the equations governing the model. This led to a value of zero (the 

Utopia point). The MNLMPC values of the control variables, u1, u2, and u3 

were 0.4992, 0.32099, and 0.06119. The MNLMPC profiles are shown in 

Figures 2a-2d. The control profiles of u1, u2, and u3 exhibited noise (Fig. 

2c) and this was remedied using the Savitzky-Golay filter to produce the 

smooth profiles u1sg, u2sg, and u3sg (Figure. 2d). The presence of the 

branch points causes the MNLMPC calculations to attain the Utopia solution, 

validating the analysis of Sridhar (2024) [20]. 
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Figure 2a: MNLMPC sv ev rv profiles 

 

Figure 2b: MNLMPC z1 z2 profiles 

 

Figure 2c: MNLMPC u1 u2 u3 profiles 
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Figure 2d: MNLMPC u1sg u2sg u3sg profiles 

Conclusions 

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) 

studies on a transmission model for respiratory syncytial virus.  The 

bifurcation analysis revealed the existence of branch points.  These branch 

points (which cause multiple steady-state solutions from a singular point) are 

very beneficial because they enable the Multiobjective nonlinear model 

predictive control calculations to converge to the Utopia point (the best 

possible solution) in the models. A combination of bifurcation analysis and 

Multiobjective Nonlinear Model Predictive Control (MNLMPC) on a 

transmission model for respiratory syncytial virusis the main contribution of 

this paper.  
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