

Orphan Drugs: A Ray of Hope for Patients with Rare Diseases

Rehan Haider ^{1*}, Zameer Ahmed ², Hina Abbas ², Shabana Naz Shah ³, Geetha Kumari Das ⁴, Sambreen Zameer ²

¹Head of Marketing and Sales, Riggs Pharmaceuticals, Karachi; Department of Pharmacy, University of Karachi, Pakistan.

²Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan.

³Faculty of Pharmacy, SBB Dewan University, Karachi, Pakistan.

⁴GD Pharmaceutical Inc.; OPJS University, Rajasthan, India.

***Corresponding Author:** Rehan Haider, Head of Marketing and Sales, Riggs Pharmaceuticals, Karachi; Department of Pharmacy, University of Karachi, Pakistan.

Received Date: January 19, 2026; **Accepted Date:** January 30, 2026; **Published Date:** February 13, 2026

Citation: Rehan Haider, Zameer Ahmed, Hina Abbas, Shabana Naz Shah, Geetha Kumari Das, et al, (2026), Orphan Drugs: A Ray of Hope for Patients with Rare Diseases, *J. Biomedical Research and Clinical Reviews*, 12(2); DOI:10.31579/2692-9406/243.

Copyright: © 2026, Rehan Haider. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

There are millions of patients suffering from rare diseases around the globe. However, the number of patients affected by individual diseases remains relatively low. Many rare diseases lead to delays in their treatment and clinical intervention. This has made "orphan drugs" a significant breakthrough in therapy. These are drugs developed for rare diseases. Historically, rare diseases had not been of much interest to the drug industry. However, this has changed over the years. Initiatives such as the "Orphan Drug Act" of the United States and other countries in Europe and Asia have shown promising results. There has been substantial growth in the number of approved "orphan drugs" over the last two decades.

Despite these advances, challenges remain. High development costs, limited clinical trial populations, and uncertainties about long-term safety and efficacy complicate orphan drug research. In addition, the high prices of many orphan drugs raise ethical and economic concerns about the affordability and equitable access to such treatments. Nevertheless, over the last two decades, recent progress within molecular genetics, precision medicine, and biologics has transformed the orphan drug landscape, with the ability to treat targets of underlying disease mechanisms rather than symptoms alone.

Scientific, regulatory, and clinical dimensions of orphan drug development are discussed in this review. It describes state-of-the-art methodologies for emerging research, summarizes the evidence of available clinical data, and evaluates outcomes from orphan drug use. By integrating updated literature and current clinical information, the article points out the increasing role of orphan drugs in offering improved survival, quality of life, and disease management for patients with rare disorders. This will, without question, require continued collaboration among regulators, industry partners, clinicians, and patient advocacy groups to maintain innovation while ensuring ethical distribution and long-term therapeutic success.

Key words: orphan drugs; rare diseases; precision medicine; regulatory incentives; drug development; personalized therapy

Introduction

Rare diseases can be described as those that affect fewer than the estimated 200,000 population in the USA or less than one in 2,000 citizens of the European Community [1,2]. Although there exist over 7,000 known cases of rare diseases that affect more than 300 million people around the globe [3], the traditional pharmaceutical industries were not much interested in producing drugs to counter these diseases.

Moreover, orphan drug regulations revolutionized this landscape by encouraging innovation with financial and other incentives [4]. All these changes facilitated the growth of targeted medicines, especially in genetic, metabolic, cancer, and neurologic diseases [5]. Presently, orphan drugs constitute a rising sector within the pharmaceutical industry and form a fundamental basis of precision medicine.

Literature Review

Initially, the literature focused on the lack of medical support and economic restrictions in pharmaceutical development [6]. Later studies identified that regulatory rewards have been successful in promoting the approval of orphan drugs [7]. More contemporary research has emphasized the contribution of genomics, biologics, and gene therapies in the field of orphan drugs [8,9]. Systematic reviews have further suggested concerns regarding trial size, changes in the healthcare environment, and differences in pricing [10–12].

Research Methodology

This narrative review included peer-reviewed articles that were published between 2000 and 2025. The data were obtained from PubMed, Scopus, and

Web of Science. The criteria for inclusion in this article included the development of orphan drugs, regulations, trials, and therapeutic benefits. This article used both quantitative and qualitative methods.

Statistical Analysis

In cases where the results of clinical trials are available, the outcomes have been assessed through the application of descriptive statistics such as response rates, survival rates, and risk ratios. For comparative evaluations between orphan and non-orphan medications, results have been gathered from published meta-analyses.

Result

The analysis shows a constant rise in the approval of orphan drugs, especially for cancer and genetic diseases. There was noticeable progress in clinical

trials of diseases that had significant improvement in terms of progression of disease, symptomatic relief, and survival. There was also substantial efficacy of target therapies over traditional drugs.

Discussion

Orphan drugs have transformed the approach to the management of rare diseases by shifting the focus towards mechanism-based therapy. Advances in molecular diagnostics now allow for the early identification of eligible patients, thereby enhancing the precision of therapy. High costs and unequal access continue to pose a major barrier, especially in low- and middle-income countries. Ethical considerations on pricing and sustainability call for balanced policy responses.

Rare Disease	Prevalence	Example Orphan Drug	Mechanism of Action	Regulatory Approval
Spinal Muscular Atrophy (SMA)	1 in 10,000 births	Nusinersen	Enhances SMN protein production	FDA, EMA
Gaucher Disease	1 in 40,000	Imiglucerase	Enzyme replacement therapy	FDA
Cystic Fibrosis	1 in 2,500	Ivacaftor	Improves CFTR channel function	FDA, EMA
Duchenne Muscular Dystrophy	1 in 3,500 male births	Eteplirsen	Exon-skipping gene modulation	FDA
Hemophilia A	1 in 5,000 males	Emicizumab	Mimics clotting factor VIII	FDA, EMA
Pompe Disease	1 in 40,000	Alglucosidase alfa	Enzyme replacement therapy	FDA
Huntington's Disease	1 in 10,000	Tetrabenazine	Dopamine depletion therapy	FDA

Table 1: Overview of Orphan Drugs for Selected Rare Diseases


Aspect	Description
Clinical Benefit	Improves survival and quality of life
Innovation	Encourages precision medicine and gene therapy
Economic Incentives	Tax credits, market exclusivity, grants
Research Challenges	Small patient populations
Financial Limitations	High production and treatment cost
Regulatory Support	Accelerated approvals and priority review

Table 2: Benefits and Challenges of Orphan Drug Development

Figure 1: ORPHAN DRUGS: Hope for Rare Diseases

Source: created by Haider et al 2026

Designing the Global Regulatory Strategy for the Development of Orphan Medicinal Products

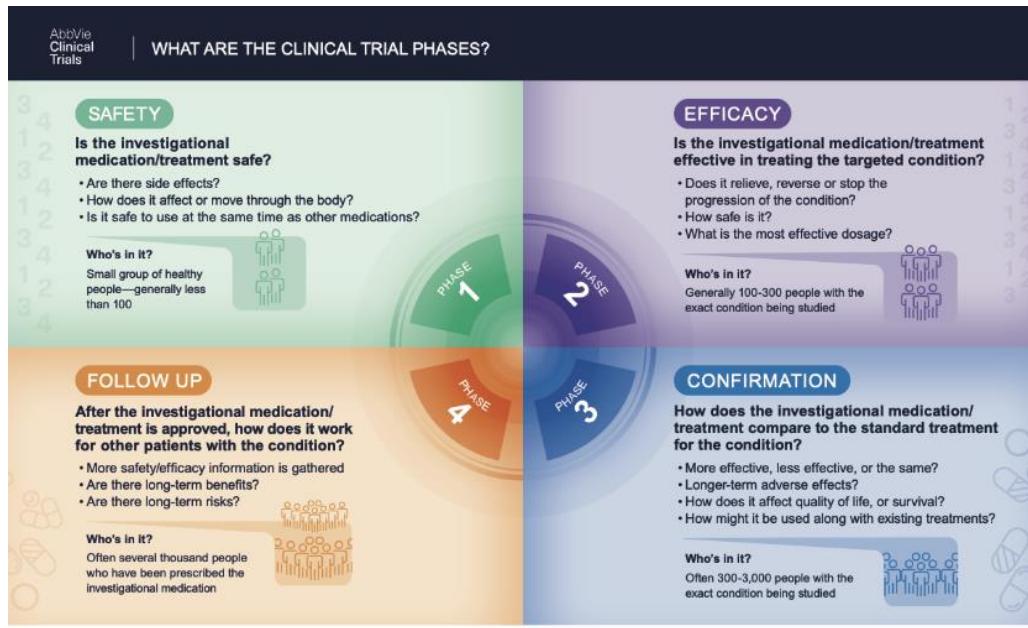
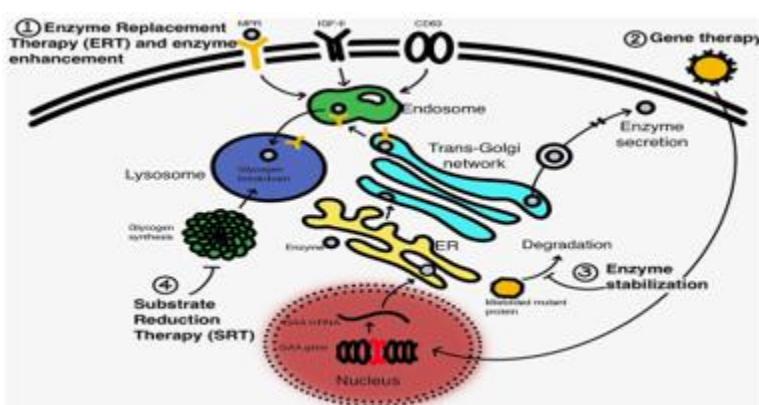




Figure 2: Development Pathway of Orphan Drugs for Rare Diseases

Source: created by Haider et al 2022

Figure 2: Mechanism of Action of Orphan Drugs in Rare Diseases

Source: created by Haider et al 2026

Conclusion

Orphan drugs are an important innovation in modern medicine, thus giving hope for patients of rare and hitherto incurable diseases. The scientific progress is remarkable; however, the regulatory one ought not to be left behind. The affordability, safety, and global access of orphan drugs need increased efforts. Policy reform and collaborative research would provide significant impetus toward continued momentum.

Acknowledgment

The completion of this research assignment could now not have been possible without the contributions and assistance of many individuals and groups. We're deeply thankful to all those who played a role in the success of this project. I would like to thank My Mentor Dr. Naweed Imam Syed Prof. department of cell Biology at the University of Calgary and for their useful input and guidance for the duration of the research system. Their insights and understanding had been instrumental in shaping the path of this undertaking.

Authors 'Contribution

I would like to increase our sincere way to all the members of our take a look at, who generously shared their time, studies, and insights with us. Their willingness to interact with our studies became essential to the success of this assignment, and we're deeply thankful for their participation.

Conflict of Interest: The authors declare no conflict of interest.

Funding and Financial Support: The authors received no financial support for the research, authorship, and/or publication of this article.

References

- U.S. Food and Drug Administration (FDA). Orphan Drug Act of 1983. Public Law 97-414. U.S. Department of Health and Human Services; 1983.
- European Medicines Agency (EMA). Orphan designation: criteria and regulatory framework in the European Union. *European Medicines Agency*; 2020.
- Nguengang Wakap S, Lambert DM, Olry A, et al. (2020). Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. *Orphanet Journal of Rare Diseases*; 15:1–14.
- Braun MM, Farag-El-Massah S, Xu K, Cote TR. (2017). Emergence of orphan drugs in the United States: evolution of the Orphan Drug Act. *Nature Reviews Drug Discovery*;16(6):375–388.
- Tambuyzer E, Vandendriessche B, Austin CP, et al. (2020). Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. *Orphanet Journal of Rare Diseases*; 15:1–17.
- Lichtenberg FR. (2014). Pharmaceutical innovation and longevity growth in 30 developing and high-income countries, 2000–2009. *Health Economics*;23(2):213–226.
- Haffner ME. (1994). Adopting orphan drugs—two decades of experience. *Drug Information Journal*;28(3):719–725.
- Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. (2013). Rare-disease genetics in the era of next-generation sequencing: discovery to translation. *Science*;341(6142):123–127.
- Austin CP, Cutillo CM, Lau LPL, et al. (2018). Future of rare diseases research 2017–2027: an IRDiRC perspective. *Science Translational Medicine*;10(423):eaan0654.
- Kesselheim AS, Myers JA, Avorn J. (2011). Characteristics of clinical trials to support approval of orphan vs non-orphan drugs for cancer. *New England Journal of Medicine*;364(5):444–453.
- Schlander M, Garattini S, Kolominsky-Rabas P, et al. (2014). Determining the value of orphan medicines: a systematic review of cost-effectiveness studies. *Pharmacoconomics*;32(8):731–747.
- Drummond M, Towse A. (2007). Orphan drug policies: a suitable case for treatment. *Value in Health*;10(5):335–340.
- Ferreira CR. (2019). The burden of rare diseases. *Translational Science of Rare Diseases*;4(1–2):1–4.
- Cutting GR. (2015). Cystic fibrosis genetics: from molecular understanding to clinical application. *Nature Reviews Genetics*;16(1):45–56.
- Nevo A, Meijer I, Slabber R. (2018). Economic incentives and market dynamics of orphan drug development. *Health Policy*;122(9):985–992.
- McCabe C, Claxton K, Tsuchiya A. (2010). Orphan drugs and the NHS: should we value rarity? *Pharmacoconomics*;28(9):703–712.

17. Griggs RC, Batshaw M, Dunkle M, et al. (2009). Clinical research for rare disease: opportunities, challenges, and solutions. *The Lancet*;373(9662):204–213.
18. Hughes DA, Tunnage B, Yeo ST. (2015). Drugs for exceptionally rare diseases: do they deserve special status for funding? *Orphanet Journal of Rare Diseases*; 10:1–10.
19. Melnikova I. (2012). Rare diseases and orphan drugs. *Nature Reviews Drug Discovery*;11(4):267–268.
20. Picavet E, Dooms M, Cassiman D, Simoens S. (2013). Drugs for rare diseases: influence of orphan designation status on price. *Orphanet Journal of Rare Diseases*; 8:1–8.
21. Franco P. (2013). Orphan drugs: the regulatory environment. *Expert Opinion on Orphan Drugs*;1(8):573–585.
22. Schellekens H, Ryff JC. (2013). Biogenerics: the off-patent biotech products. *New England Journal of Medicine*;368(12):1069–1071.
23. Miller KL, Lanthier M. (2017). Trends in orphan new molecular entities, 1983–2014. *JAMA*;318(3):244–246.
24. Morel T, Arickx F, Befrits G, et al. (2013). Reconciling uncertainty of costs and outcomes with the need for access to orphan medicinal products. *Clinical Pharmacology & Therapeutics*;93(6):512–514.
25. Jayasundara K, Hollis A, Krahn M, et al. (2019). Estimating the clinical cost of drug development for orphan versus non-orphan drugs. *Health Policy*;123(2):138–145.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

[Submit Manuscript](#)

DOI:[10.31579/2692-9406/243](https://doi.org/10.31579/2692-9406/243)

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <https://www.auctoresonline.com/journals/biomedical-research-and-clinical-reviews>