

Abdominal Ultrasound: Imaging Evaluation of the Liver, Gallbladder, Pancreas, and Bowel.

Ahmad Saleh Mufarh Eid ^{1*}, Bashar Jamal Alnajjar ²

¹Primary health care corporation (PHCC), Qatar.

²Dr. Jamil Altotangi Hospital, MOH, Jordan.

***Corresponding Author:** Ahmad Saleh Mufarh Eid, Primary health care corporation (PHCC), Qatar.

Received Date: January 20, 2026; **Accepted Date:** January 28, 2026; **Published Date:** February 04, 2026

Citation: Mufarh Eid AS, Bashar J. Alnajjar, (2026), Abdominal Ultrasound: Imaging Evaluation of the Liver, Gallbladder, Pancreas, and Bowel, *J. Biomedical Research and Clinical Reviews*, 12(2); DOI:10.31579/2690-4861/246

Copyright: © 2026, Ahmad Saleh Mufarh Eid. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Abdominal ultrasound (AUS) is a non-invasive imaging modality frequently employed to assess conditions of the liver, gallbladder, pancreas, and bowel. It offers a rapid alternative to more extensive imaging protocols in evaluating patients with acute or chronic disease conditions. The speed and accessibility of AUS enable broad adoption in clinical practice.

Fundamental ultrasound principles form the basis for reliable liver, gallbladder, pancreas, and bowel assessment. Transducer selection tailored to patient habitus governs image resolution and depth. The liver is optimally evaluated using a 3.0-5.0 MHz curved-array transducer, allowing adequate penetration without undue loss of detail or frame rate. Patient positioning and transducer angling define the fundamental acoustic windows. Bowel assessment is limited due to normal peristalsis and gas-associated attenuation, yet the central abdominal location, targeted imaging between the hepatic flexure and sigmoid colon, and recognition of characteristic echo textural features enhance diagnostic potential.

Key words: abdominal ultrasound; hepatobiliary imaging; transducer frequency selection; acoustic windows and patient positioning; bowel ultrasound and gas attenuation

Introduction

Abdominal ultrasound facilitates evaluation of the hepatic, biliary, pancreatic, and bowel systems [1]. As a basic technique, it guides the work-up of acute and chronic scenarios. Clinical indications emphasize pain, malignancy and trauma. Limitations center on gas obscuring bowel and hypodense liver lesions [2]. Abdominal ultrasound offers several comparative advantages: it is non-invasive, does not require intravenous contrast, it is readily available, inexpensive and simple to perform [3].

Liver ultrasound has an important role in ongoing patient management, success partly based on straightforward technique [4]. A comprehensive survey of the liver on a single ultrasound study depends upon several technical factors [5]. Each factor therefore merits definition when detailing standard operating procedures [6].

Patients should present fasted to minimize bowel gas. Scanning typically begins in the right upper quadrant with the transducer oriented longitudinally, followed by a transverse orientation of organs from the midline to the right flank [7]. Using aged equipment, measuring liver

dimensions with 2-dimensional-echocardiography remains problematic: the tagged end of printed hard-copy images denotes organ dimensionality, and X-ray films of the “m-mode” sonograms remain prevalent [8]. Where either the right lobe of the liver or the gall-bladder remains visible, the distance between those two structures then becomes the dominant examination criterion [7].

1. Overview of Abdominal Ultrasound Principles

Safe, fast, and widely available, ultrasound is the primary tool for assessing the liver, gallbladder, pancreas, and bowel [9]. Insight into hepatic parenchyma, biliary ducts, pancreatic duct, and intestinal loops helps recognize conditions such as cirrhosis, cystic lesions, or intestinal obstruction while guiding decisions on further imaging, intervention, or follow-up [7].

Imaging of the major abdominal organs using ultrasound requires knowledge of instrument selection, scanning techniques, and Doppler utility, supported

by an understanding of safe and effective practice [10]. During abdominal ultrasound, transducer choice, positioning and orientation to fluid-filled organs, methods for augmenting bowel aperture and optimizing visualization, and identification of common artifacts remain crucial considerations [11].

Higher-frequency linear arrays (5–12 MHz) provide superior axial and lateral resolution, with lower-frequency convex or sector transducers (1–5 MHz) preferred for wide fields of view [12]. Special-purpose probes (intracavitary/transesophageal) yield access to selective organs [13]. For large adult or obese individuals, sector transducers allow broader access without sacrificing detail [14].

2. Liver Imaging

The normal ultrasonographic anatomy of the liver includes liver parenchyma, portal venous system, hepatic veins and biliary tree [15]. The main portal vein divides in a right and left posterior and anterior branch [16]. The sonographic features of age-related liver anatomical variants and technique-related limitations (e.g. transplant procedure or biliary tree) are summarized. Pathologies impacting liver imaging are classified as diffuse versus focal lesions [17]. Diffuse liver diseases with specific ultrasound hallmarks comprise steatosis, fibrosis, hepatitis, cirrhosis and hemochromatosis [18]. A review of ultrasound findings associated with steatosis, fibrosis and hepatic focal lesions allows for narrowing the differential diagnosis and guiding to further evaluation [19]. Vascular disorders can also be detected by ultrasound: portal vein thrombosis or occlusion and hepatofugal flow. Diffuse abdominal ultrasound diseases are associated with specific ultrasound diagnosis [20]. At least three nominal parameters help reaching a conclusion about diffuse disease (liver size, kidney/liver echogenicity ratio, fibroelastometry) [20]. Various approaches adapt abdominal ultrasound technique requirement to optimize liver scanning and interpretation [21]. Adequate patient preparation with fasting and standard scans (longitudinal and transverse) assists in identifying the organ and locate lesions. Selection of parenchyma areas, extra-hepatic vessels and biliary branches is useful for obtaining repeatable measurements figuring in a standardized report [22]. Contrast-enhanced ultrasound, perfusion measurements and new imaging strategies can extend scope of liver examination [22].

2.1. Normal Sonographic Anatomy and Variants

Abdominal ultrasound facilitates noninvasive assessment of hepatic, biliary, pancreatic, and bowel systems [23]. Common indications include hepatobiliary disorder, diabetes, abdominal pain, and jaundice [23]. Despite limitations such as operator-dependent quality and reduced visualization in over- or underweight patients, ultrasound offers several advantages over cross-sectional imaging [2]. It rapidly identifies gallstones and small-volume effusions, excludes choledocholithiasis, assesses bowel peristalsis, and interrogates vascular structures [24].

Sonographic evaluation of the liver covers parenchyma, portal venous system, hepatic veins, and biliary tree [8]. Normal anatomic description aids recognition of common pathologies including steatosis, fibrosis, focal lesions, vascular disorders, and diffuse diseases 30. Imaging technique and optimization strategies are also addressed [25].

2.2. Common Pathologies and Sonographic Findings

Abdominal ultrasound represents the first line of investigation for patients with suspected hepatic, biliary, pancreatic, or bowel disorders [26]. Common clinical indications reflect the disease spectrum necessitating examination:

hepatitis and hepatitis B virus screening in endemic regions, assessment of liver cirrhosis, jaundice evaluation, acute right upper quadrant pain, hepatocellular carcinoma screening in cirrhotic liver, and traumatic liver injury [8]. Despite liver biopsy, CT, or MR imaging being helpful, ultrasound plays an important role in the follow-up of liver disease and post-treatment evaluation of various lesions [27]. Bowel ultrasound is often the main tool to assess inflammatory bowel disease or abscess [28]. Compared to other imaging techniques, ultrasound is more available, can be performed in bed, requires no radiations, and has a potential cost-saving impact [26]. It can be performed before other imaging, and in many instances, has a better performance than other modalities [29].

2.3. Technique and Optimization

In preparing for an abdominal ultrasound examination, the patient's abdomen should be free of air and excess fluid [30]. To this end, fasting for eight to twelve hours is usually prescribed [31]. In pediatrics, shorter fasting time is required [31]. Many medications are allowed, except for those that lower peristalsis [8]. The patient is positioned supine, with the right arm raised above the head and the legs in a comfortable position [32]. An additional position in the right lateral decubitus may facilitate gallbladder or kidney assessment [33]. Acoustic windows begin with a longitudinal-entry plane through the epigastrium (liver, portal vein, aorta) selected based on the clinical question [34]. A summary of the examination approach appears with emphasis on pelvic ultrasound [35].

After scanning a basic series of images, supplementary acquisitions proceed according to the established protocol [36]. Routine frontal planes examine the liver (longitudinal sections at right lobe, caudate, and left lobe; transversal sections through aortic bifurcation), gallbladder (longitudinal and transversal), pancreas (longitudinal head-craniocaudal; transversal head and neck), kidneys, and bladder [26]. Targeted acquisitions can include abnormal structures or sightlines from another position [37]. All measurements and Doppler color acquisition take place on the standard images [38]. Color Doppler evaluation should check the main and segmentary hepatic arteries, whereas pulse Doppler may furnish additional information about internal flows [39].

3. Gallbladder Evaluation

Gallbladder sonography evaluates anatomical variants, detects gallstones, sludge, and cystic lesions, and diagnoses cholecystitis or biliary tract obstruction [40]. The gallbladder, a muscular pear-shaped reservoir for bile, can migrate aberrantly, undergo malformations, or develop cysts [40]. Standard scanning planes include longitudinal and transverse views through the organ's body; measurements of length, diameter, wall thickness, and duct caliber can supplement the examination [41].

Acute and chronic cholecystitis arise from obstruction, with acute cholecystitis commonly linked to the cystic duct via gallstones [42]. Diagnostic criteria encompass gallbladder wall thickening exceeding 3mm, pericholecystic fluid, and the sonographic Murphy sign [43]. In acute cases, the gallbladder is typically distended; in chronic cholecystitis, the gallbladder often remains contracted [44]. The differential diagnosis for thickened walls includes primary or metastatic hepatic lesions [45].

3.1. Normal Anatomy and Variants

Abdominal ultrasound is a widely performed non-invasive examination. Ultrasound examination of the liver, gall bladder, pancreas and bowel can be performed under a single examination covering all organs of the upper abdomen [46]. A limited survey of the liver, gall bladder, pancreas and bowel

is often requested for screen [47]. It is commonly practiced by ultrasonicates [48]. The safety of abdominal ultrasound has been reviewed. In the study, seventy normal adult subjects aged between eleven to seventy- two years were selected [22]. A total of four hundred and seventy-seven screenings [1]. The liver is examined in subcostal and intercostal views as stated by other authors [49]. Abdominal ultrasound not only indicates cysts, but also indicates some benign causes of hepatic dysfunction [50]. Chronic obstructive jaundice due to extra hepatic obstruction invited due to gall stones, primary sclerosing cholangitis and pancreatic carcinoma are some conditions covered. Such dietary information was often required in the past [50].

The gall bladder is examined in a settled fasting status in the morning hours. The fasting period allows better display of thin wall structure [51]. It also reduces the chance of discovering many abnormalities such as acalculous cholecystitis and decreased gall bladder function [52]. Many other details are covered in the survey such as radiolucent stones, gall bladder dilatation from outflow obstruction, detection of innumerable small stones, abnormality of the aorta and infra renal condition of abdominal aorta [53]. To detect the gall bladder only fasting is sufficient. Gall stone evaluation is different from gall bladder ultrasound [53]. Speculation is dismissed for gall stones [54]. The gall bladder is circumferentially scanned in the intercostal view [55]. Normal transabdominal ultrasound procedure for investigating the gall bladder is described. There are many other stops points and scanning protocols that can be followed [56].

3.2. Acute and Chronic Cholecystitis

Cholecystitis represents a common inflammatory process localized to the gallbladder; with the condition most often being precipitated by the presence of gallstones [6]. The inflammation may be acute or chronic in nature and complicating alterations of the gallbladder wall, surrounding fluid, and parenchymal blood flow develop following a duration of inflammation [5]. Standards for the diagnosis of acute cholecystitis are provided through the Tokyo Guidelines on Acute Cholecystitis [44].

Acute cholecystitis is indicated Sono graphically if at least one of the following findings is present: gallbladder wall thickening of 4 mm or greater, pericholecystic fluid collection, or sonographic Murphy's sign [57]. Findings supporting the diagnosis of acute cholecystitis but not included in the Tokyo Guidelines comprise gallbladder distention, intramural gas or air-fluid levels characterized as crescent-shaped within the gallbladder, and vascular lesions detected across the gallbladder wall [58]. In acute cholecystitis, gallbladder stones are visualized according to the normal clinical classification system [59].

3.3. Gallstones and Biliary Sludge

Gallstones and biliary sludge are the most common conditions affecting the gallbladder [57]. Biliary sludge consists of a mixture of bile pigments and cholesterol crystals with a defined echogenicity [60]. Gallstones can be differentiated from sludge because they are mobile inside the gallbladder lumen, while sludge does not show mobility [61]. Gallstones can be echogenic, with posterior acoustic shadowing that varies according to the type of stone, or non-echogenic without posterior acoustic shadowing [44]. Both gallstones and biliary sludge are essential to mention if seen during the examination, and the gallbladder should also be checked for collection of a fluid that could be an indicator of a possible aspiration of a bile [62].

3.4. Gallbladder and Biliary Ductal Dilatation

Gallbladder and biliary ductal dilatation detected on ultrasound warrants careful evaluation of both the degree of dilatation and possible obstructive etiologies [62]. Routine guage thresholds define the limits of normality for gallbladder neck (≤ 10 mm) and common bile duct (≤ 7 mm) dimensions [57]. For the latter, the upper threshold of normality has been reported to change with age [63]. Downstream consequences of obstruction, such as gallbladder distension or intrahepatic ductal dilatation, complement the differential diagnosis for extra-, intra-, and pancreatic ductal obstruction [64].

4. Pancreas Imaging

Abdominal ultrasound demonstrates reliable, extensive, and safe capability for assessing the liver, gallbladder, pancreas, and bowel [65]. The liver is evaluated for echogenicity, size, contour, portal vein anatomy, biliary tree, focal lesions, and in some clinical scenarios, perfusion patterns [47]. The gallbladder assessment ranges from an uncomplicated study to establishing acute cholecystitis, identifying the presence of stones and sludge, and investigating dilatation [50]. Pancreatic imaging concentrates on determining the presence of acute or chronic pancreatitis, the visualization of certain masses, and cystic lesions of the pancreas [66]. The bowel assessment focuses on demonstrating the condition of the bowel wall, content (presence of plications) and evaluation of significant packing [49]. Each organ analysis is performed independently, but recognizes the interaction of the organs with afflictions observed in one part altering the other [65].

4.1. Pancreatic Anatomy and Sonographic Windows

The pancreas lies in the retroperitoneum in a transverse position, extending from the second part of the duodenum to the splenic hilum [67]. The normal pancreas demonstrates homogeneous echogenicity, similar to or slightly less than that of the normal liver [68]. The pancreas can be examined using various sonographic windows, including the epigastric, left lateral, and, to a limited degree, suprapubic [69]. The epigastric window is the most useful and is obtained by placing an ultrasound transducer in the midline of the abdomen under the xiphoid process or just above an over-distended urinary bladder [8].

When the pancreas cannot be visualized adequately through these approaches, alternative positions, such as upright or left lateral decubitus, may be beneficial [70]. The anterior wall of the stomach can also be examined to assess whether filling of the organ is appropriate [71]. In the left lateral approach, the left lobe of the liver is visualized, and if it appears smaller than expected, the head of the pancreas should be evaluated for enlargement [72]. The imaging of the pancreas is complemented by the assessment of the splenic artery and vein [73]. A dilated splenic vein in the left lateral position indicates possible pancreatitis [74]. The gallbladder is situated in the gallbladder fossa at the inferior aspect of the liver [74]. The normal gallbladder wall is thin, demonstrating a trilaminar appearance [73]. The gallbladder is usually examined through an epigastric window or an intercostal window [75]. In patients prone to obstructive jaundice, the gallbladder remains distended despite fasting [75].

The gallbladder can be visualized through multiple approaches [76]. In the epigastric or anterior abdominal approach, once the liver has been evaluated through a longitudinal scan with the transducer placed along the line between the xiphoid process and the umbilicus, it is maneuvered laterally towards the right upper quadrant [77]. Holding the transducer at a 45-degree angle permits the gallbladder and liver to be examined in the same setting [78]. For the intercostal approach, the transducer is placed in the right upper quadrant

for a longitudinal scan of the right lobe [78]. Ideally, the left lobe of the liver should also be evaluated through the same window to confirm the gallbladder is being assessed, as the gallbladder fossa can be mistaken for a portion of the caudate lobe or a cystic lesion in the medial inferior segment of the right lobe [79]. Scanning through the right kidney and suprarenal glances along the aorta can provide supportive points and alleviate uncertainty regarding the gallbladder location [80]. In patients with acute cholecystitis, the gallbladder wall is enlarged but not always available for assessment [81].

4.2. Acute and Chronic Pancreatitis

Normal pancreatic echogenicity reflects the combined echogenicity of the gland itself and mesenteric fat; isoechoic to slightly hyperechoic compared to liver parenchyma is typical [82]. Variations in echogenicity are related to age, sex, body habitus, and nutritional status; visualizing the gland may be especially challenging in large patients [83]. Scans should ideally be obtained with the patient in the supine or left lateral decubitus position [84]. Multiple windows are available—subxiphoid, right upper quadrant, left upper quadrant, and periumbilical—and manoeuvres such as deep inspiration, splenic flexure compression, and water ingestion can facilitate access [82].

Acute pancreatitis is an inflammatory condition characterized by autodigestion of the pancreas due to inappropriate activation of digestive enzymes [85]. It can be classified as mild, moderate, or severe according to the clinical severity index. Changes can be detected within 24–48 hours in up to 90% of cases, which include: enlargement of the gland, an increase in echogenicity, low-echo peripancreatic fluid along the parietal peritoneum, enlargement of the main pancreatic duct, and complications affecting other abdominal organs [86]. A wide differential diagnosis remains possible, including pancreatic trauma when clinical suspicion is high [87].

Chronic pancreatitis is differentiated from the acute form by the presence of irreversible histological changes [88]. Early-stage chronic pancreatitis may be indistinguishable from mild acute pancreatitis on ultrasound, although approximate staging systems have been established [70]. Changing sonar images of the gland may also yield distinguishing signs [70]. A checklist of imaging characters can aid in formulating differential diagnoses [88].

4.3. Pancreatic Neoplasms and Cystic Lesions

Several neoplasms and cystic lesions of the pancreas have sonographic features that permit a confidence diagnosis or allow selection of appropriate complementary cross-sectional imaging or endoscopic assessment [89]. The most frequent pancreatic entities recognized by ultrasound comprise solid tumours, cystic neoplasms, pseudocysts, and serous cystadenomas [90]. Endoscopic ultrasound examination aids in characterizing solid and cystic pancreatic masses or lesions; cross-sectional imaging assists in evaluating the extent of disease and surgical planning [91]. Knowledge of the common pancreatic variants and pathology and awareness of pitfalls improve diagnostic confidence and accuracy [92].

4.4. Pitfalls and Artifacts in Pancreatic Ultrasound

Despite its established role in non-invasive assessment of the pancreas, ultrasound has certain limitations in visualizing this organ [93]. These limitations include inherent anatomical factors, the presence of bowel gas, and operator dependency [94]. Although some manoeuvres that may improve pancreatic access via the transabdominal route are well-known, they are often poorly applied in practice [93]. Specific factors may further affect the quality of ultrasound evaluation, including insufficient patient history, inconsistency in technique, and failure to recognize the appearance of an

abnormal pancreas or related conditions [94]. Pitfalls and artifacts in pancreatic ultrasound may lead to misinterpretation of findings and erroneous diagnosis [94]. Accurate detection and characterization of pancreatic diseases ultimately depend on clear acquisition and analysis of images, along with avoidance of misinterpretation [95].

5. Bowel Assessment in Abdominal Ultrasound

Sonographic evaluation of the bowel includes assessment of the small and large bowel loops, visualizing wall thickness, layering, peristalsis, and adjacent mesenteric interfaces [96]. All systemic organs, including the small and large bowel, may be studied with ultrasound [97]. Several pathologies are demonstrable with ultrasound, including inflammatory, infectious, ischemic, obstructive, and neoplastic conditions [32]. Access to cross-sectional imaging, such as CT or MRI, should be considered when bowel ultrasound does not permit confident diagnosis [98]. Practical tips to optimize scanning and patient-cooperation strategies should be employed when studies are performed [99].

5.1. Sonographic Evaluation of the Small and Large Intestine

The small and large intestine can also be evaluated using abdominal ultrasound [98]. Although the sensitivity of this technique is low, it nevertheless provides some useful information without pre-treatment [100]. The small intestine can be subjected to measurements of wall thickness, peristalsis, and structure of walls [101]. Additionally, the surrounding mesenteric interface can be observed [102]. The large intestine can be assessed in a similar manner, but a volume of fluid is necessary for a proper study [103]. The evaluation of intestinal ultrasound is limited, and in cases of obstruction, CT or MRI are often selected [104].

The analysis concentrates on the pancreas; possible hepatic, biliary, and renal, or extra-abdominal pathologies are noted within the examination [105]. Evaluation of the abdominal organs is carried out according to a systematic approach: specific window techniques and positioning procedures optimize results, and during each step, the entire abdomen is repeatedly reviewed [106].

5.2. Common Bowel Pathologies and Sonographic Features

Abdomen is a common ultrasound examination that includes imaging of the liver, gallbladder, pancreas, bowel, and urinary system [41]. Abdominal ultrasound examinations are requested along with obstetric, gynecological, and vascular examinations [107]. Abdominal ultrasound examinations are crucial for assessing suspected pathology, monitoring the response to treatment, and performing follow-up studies in patients who have undergone surgical treatment [96]. Abdominal ultrasound has an important role in the assessment of infectious diseases, hepato-biliary- pancreatic diseases, and inflammatory bowel disease [32]. The ultrasound assessment of the bowel includes the small bowel, large bowel, and rectum [108]. The ultrasound evaluation of the bowel assesses the bowel wall, diameter of the bowel, peristalsis, motility, abdominal compartment syndrome, wall patterning, and extra intestinal disease [109]. The ultrasound evaluation of the bowel is especially useful for pediatric and obstetric oblique patients [41].

5.3. Limitations and Supplemental Imaging

The sonographic evaluation of the liver, gallbladder, pancreas, and bowel is fundamental yet inherently limited [2]. Abdominal ultrasound is often the first-line modality for assessing biliary tract and pancreatic conditions, capable of distinguishing acute cholecystitis and pancreatitis from alternative diagnoses [109]. Hepatic pathology, while typically not an initial ultrasound target in the face of alternate clinical concerns, is nevertheless encountered

in parallel studies, with abnormal findings frequently evident [108]. Key limitations include operator dependency, restricted definition of normality, diminishing sensitivity for disease detection in the presence of abnormalities, and the inability to evaluate certain lesions [110]. Supplementary imaging, particularly computed tomography or magnetic resonance techniques, is appropriate for interrogating suspected pathology, assessing complications, or further clarifying differential considerations [32].

Interpretation of bowel ultrasound is further complicated by inadequate attainment of a full clinical history, ongoing therapy, and the time-consuming nature of the examination within a typically constrained protocol [111]. The small and large bowel are therefore better studied using other modalities when broader anatomical imaging of the renal tract, gallbladder, and pancreas is pursued [112]. The presence of gallstones affecting the cystic duct, a factor of relevance to the clinical inquiry, can also be determined readily via a brief ultrasound evaluation [113].

6. Integration of Findings and Clinical Correlation

The value of abdominal ultrasound is heightened by the ability to correlate findings across hepatic, biliary, pancreatic, and bowel systems and to integrate these observations with the clinical context [32]. Careful consideration of relevant history in relation to the sonographic appearance permits a concise differential diagnosis to be proposed, enabling targeted recommendations for further investigation, additional management steps, or follow-up time frames [114].

In the liver, liver steatosis and gallstones are prevalent findings in individuals with a history of both hepatitis and alcohol consumption [8]. In patients with hepatitis, gallstones may not be readily visible, especially lenticular stones [115]. In such cases, examining bile duct dilatation and associated clinical information can provide significant insights [116]. Both transluminal and non-transluminal approaches can prove valuable for assessing gallbladder disease in the context of hepatitis [117]. For cystic lesions, a list of differential diagnoses can be narrowed down to hydatid cysts, abscesses (bacterial, amebic, or hydatid), pancreas divisum, and choledochal cysts, particularly when sonograms indicate the presence of a normal external envelope [118].

Focal areas of abnormal echogenicity in the liver, whether increased or decreased, warrant attention; key features such as number, size, vascularity, and presence of internal echoes can help differentiate various types of tumours, both benign and malignant [119]. For suspected inflammatory processes within the pancreas, a review of surrounding abdominal structures is advisable [120]. Findings consistent with pancreatitis may still be indicative of biliary obstruction secondary to choledocholithiasis, especially when the patient has a record of biliary colic [121]. Ulcerative colitis can also be indicated through examination of contiguous segments of the colon [121].

Conclusion

Abdominal ultrasound offers a valuable imaging modality for evaluating the liver, gallbladder, pancreas, and bowel. Its clinical applications in these organs are numerous, and the technique can be performed readily using standard equipment. Among available imaging options, ultrasound provides several distinct advantages over other modalities, complementing computed tomography and magnetic resonance imaging. The respective strengths of each imaging technology can be leveraged to enhance patient management 8. The information provided in this chapter facilitates the implementation of comprehensive ultrasound protocols suited to institutional requirements and the specific capabilities of equipment. Future developments in abdominal

imaging will include improvements in three-dimensional rendering, evaluation of biliary and vascular flow, and contrast-enhanced ultrasound techniques to extend the examination beyond hepatobiliary structures.

References

1. Rana SS. (2022). Evaluating the role of endoscopic ultrasound in pancreatitis. *Expert Review of Gastroenterology & Hepatology*.
2. Prager M, Prager E, Sebesta Jr C, Sebesta C. (2022). Diagnostic and therapeutic indications for endoscopic ultrasound (EUS) in patients with pancreatic and biliary disease—novel interventional procedures. *Current Oncology*.
3. Syed M, Jury DR, Kumar N. (2024). Abdominal Ultrasound. InCritical Care Echocardiography: A Self-Assessment Book Jul 18 (pp. 395-434). Cham: Springer International Publishing.
4. Premkumar M, Karvellas CJ, Kulkarni AV, Bhujade H, Reddy KR. (2024). Role of point-of-care ultrasound (POCUS) in clinical hepatology. *Hepatology*. Jul 1:10-97.
5. Wazir H, Abid M, Essani B, Saeed H, Khan MA, et al., (2023). Diagnosis and treatment of liver disease: current trends and future directions. *Cureus*. Dec 4;15(12).
6. Gadour E, Awad A, Hassan Z, Shrwanji KJ, Miutescu B, Okasha HH. (2024). Diagnostic and therapeutic role of endoscopic ultrasound in liver diseases: A systematic review and meta-analysis. *World Journal of Gastroenterology*. Feb 21;30(7):742.
7. Fatchett J. (1997). Basic Abdominal Sonography.
8. Mortimore G, Mayes JP. (2019). Liver ultrasound scans.
9. Zwank MD, Leo MM, Schutzer CM. (2025). Hepatobiliary, Pancreas, and Spleen Ultrasound. In Advanced Point-of-Care Ultrasound: A Comprehensive Review Aug 3 (pp. 163-192). Cham: Springer Nature Switzerland.
10. Segura-Grau A, Salcedo-Joven I, Montes-Belloso E, Cinza-Sanjurjo S, Segura-Fragoso A, Segura-Grau E. (2025). Usefulness of handheld ultrasound devices in the assessment of abdominal pathology and comparison with high-end ultrasound devices. *The Ultrasound Journal*. Aug 5;17(1):38.
11. Poggi C, Palavecino M. (2024). Ultrasound principles and instrumentation. *Surgery Open Science*.
12. Lv J, Wang N, Zhu X, Li Z, Shen Z, Cui Y, Jian X. (2023). A miniature forward-looking phased-array transducer for interventional biopsy guidance. *IEEE Sensors Journal*. Feb 23;23(7):6509-6516.
13. Sun H, Lv C, Wang L, Xie M et al. (2025). Flexible ultrasonic transducer array with automatic phase calibration for arteriosclerosis detection. *Ultrasonics*.
14. Li S, Zhang G, Wang Y, Li W, Sun Y, Li C. (2024). Photoacoustic imaging of peripheral vessels in extremities by large-scale synthetic matrix array. *Journal of Biomedical Optics*. Jan 15;29(S1): S11519.
15. Sumadewi KT. (2023). Embryology, anatomy and physiology of the liver. *Indian Journal of Clinical Anatomy and Physiology*.
16. Pilcher JM, Patel P. (2022). Abdominal Ultrasound—Liver, Spleen and Biliary Tree. Ultrasound in the Critically Ill: A Practical Guide.
17. Kasnazan QHA, Weas IHAA. (2025). Anatomy of the biliary system. The Mastery of Bile Duct Injury.
18. Vardar BU, Dupuis CS, Goldstein AJ, Vardar Z, Kim YH. (2022). Ultrasonographic evaluation of patients with abnormal

liver function tests in the emergency department. *Ultrasonography*. Apr 1;41(2):243-262.

19. Leoni FP, Puccinelli C, Pelligra T, Gori E, Marchetti V, Diana A, Linta N, Citi S. (2023). Ultrasonographic appearance and possible clinical relevance of hyperechoic foci of mineralization in the canine intrahepatic biliary tree. *Open Veterinary Journal*. Nov 17;13(5):541-549.

20. Sezgin O, Akpinar H, Özer B, Törüner M, Bal K, Bor S. (2023). The abdominal ultrasonography results of Cappadocia cohort study of Turkey reveals high prevalence of fatty liver. *The Turkish Journal of Gastroenterology*. Jun 1;34(6):652.

21. Olthof K, Fusaglia M, Kok N, Kuhlmann K. (2025). Image-guided navigation in liver surgery. *British Journal of Surgery*. Nov;112(11).

22. Verma NK, Chaurasia A. (2024). Ultrasonographic Topography of Abdominal Organs in Small Animal Practice. Training Manual.

23. Tacelli M, Lauri G, Tabacelia D, Tieranu CG, Arcidiacono PG, Säfötoiu A. (2025). Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects. *Best Practice & Research Clinical Gastroenterology*. Feb 1; 74:101975.

24. Uchida-Kobayashi S, Chu WCW, Kawada N. (2026). Abdominal Ultrasound Training for Gastroenterologists in Asia: Considerations and Sample Program. *Gastroenterology*.

25. Sattar Arif Khammas A, Mahmud R. (2020). Ultrasonographic Measurements of the Liver, Gallbladder Wall Thickness, Inferior Vena Cava, Portal Vein and Pancreas in an Urban Region, Malaysia.

26. Caraiani C, Yi D, Petrescu B, Dietrich C. (2020). Indications for abdominal imaging: When and what to choose?

27. Boccatonda A, Brighenti A, Tiraferri V, Doglioli M, Iazzetta L, et al., (2025). POCUS for acute abdominal pain: practical scan protocols on gastrointestinal diseases and an evidence review. *Journal of Ultrasound*. Sep 29:1-21.

28. Serra C, Dajti E, De Molo C, Montaguti E, Porro A, et al., (2023). Utility of doppler-ultrasound and liver elastography in the evaluation of patients with suspected pregnancy-related liver disease. *Journal of clinical medicine*. Feb 19;12(4):1653.

29. Anicic MN, Dumic K, Kolega Mrkic L, Spehar Uroic A, Krnic N, et al., (2025). Prevalence of liver disorders in children and adolescents with type 1 diabetes mellitus. *BMC pediatrics*. Aug 4;25(1):592.

30. Schreiner M, Thien H, Braasch T, Hoffmann I, Wesemann U, Merkel D, Ludwig M. (2025). The influence of fasting on abdominal ultrasound image quality—a randomized controlled trial. *Abdominal Radiology*. Apr 29:1-9.

31. Sondh RS, Mankotia R. (2023). Reducing prolonged fasting for abdominal ultrasound scans. *BMJ Open Quality*.

32. Sukmono B, Hidayat J, Sugiarto A, Anggreni M. (2023). Preoperative Fasting of Eight Hours Provide Better Gastric Emptying: Ultrasound Assessment of Gastric Volume. *Asian Journal of Anesthesiology*. Oct 13.

33. Razak A, Baburyan S, Lee E, Costa A et al. (2024). Role of point-of-care gastric ultrasound in advancing perioperative fasting guidelines. *Diagnostics*.

34. Degeeter T, Demey B, Van Caelenberg E, De Baerdemaeker L, Coppens M. (2023). Prospective audit on fasting status of elective ambulatory surgery patients, correlated to gastric ultrasound. *Acta Chirurgica Belgica*. Jan 2;123(1):43-48.

35. Sarhan KA, Hasaneen H, Hasanin A, Mohammed H, Saleh R, Kamel A. (2023). Ultrasound Assessment of Gastric Fluid Volume in Children Scheduled for Elective Surgery After Clear Fluid Fasting for 1 Versus 2 Hours: A Randomized Controlled Trial. *Anesthesia & Analgesia*. Apr 1;136(4):711-718.

36. Wang TC, Camilleri M, Lebwohl B, Lok AS, Sandborn WJ, et al., editors. (2022). Yamada's atlas of gastroenterology. *John Wiley & Sons*; Feb 23.

37. Ney A, Pereira SP. (2024). 22 Cholangiopancreatography. *Bailey & Love's Essential Operations in Hepatobiliary and Pancreatic Surgery*. Nov 15.

38. Niedzwiecki B. (2026). Study Guide for Kinn's Medical Assisting Fundamentals. *Administrative and Clinical Competencies with Anatomy & Physiology-E-Book: Administrative and*

39. Tortora GJ, Derrickson BH, Burkett B, Cooke J, Diversi T, et al., (2025). Principles of Anatomy and Physiology, 4th Asia-Pacific Edition. *John Wiley & Sons*; Oct 10.

40. Hassan M. (2001). Ultrasonographic Assessment of the Gallbladder Motor Function.

41. Smereczyński A, Kołaczyk K, Bernatowicz E. (2020). Optimization of diagnostic ultrasonography of the gallbladder based on own experience and literature.

42. Gallaher JR, Charles A. (2022). Acute cholecystitis: a review. *Jama*.

43. Tran A, Hoff C, Polireddy K, Neymotin A et al. (2022). Beyond acute cholecystitis—gallstone-related Complications and what the emergency radiologist should know. *Emergency Radiology*.

44. Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, et al., (2023). Gallstone and gallbladder disease: biliary tract and Cholangiopathies. *Comprehensive Physiology*. Jul 17;13(3):4909-4943.

45. Costanzo ML, D'Andrea V, Lauro A, Bellini MI. (2023). Acute cholecystitis from biliary lithiasis: diagnosis, management and treatment. *Antibiotics*.

46. Adams RB. (2022). Ultrasound scanning techniques. *Surgery Open Science*.

47. Lucius C, Braden B, Jenssen C, Möller K, Sienz M, et al., (2025). Ultrasound of the Gallbladder—An Update on Measurements, Reference Values, Variants and Frequent Pathologies: A Scoping Review. *Life*. Jun 11;15(6):941.

48. Halim SE. (2024). Acute Pancreatitis with Abdominal Bloating and Normal Transabdominal Ultrasound. *The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy*. Jan 29;24(3):270.

49. Okasha HH, Gadour E, Atalla H, AbdEl-Hameed OA, Ezzat R, et al., (2024). Practical approach to linear endoscopic ultrasound examination of the gallbladder. *World Journal of Radiology*. Jun 28;16(6):184.

50. Di Ciaula A, Khalil M, Portincasa P. (2025). Ultrasonographic assessment of gastric and gallbladder dynamics in human health and disease. *Internal and Emergency Medicine*.

51. Mohsen BM. (2022). Measure Blood Glucose and Accumulation Glucose and Lipids in Infected Patients and Relation with Stone Gall Bladder. *Ann. For. Res.*

52. Tibi S, Ahmed S, Nizam Y, Aldoghmi M, Moosa A, et al., (2023). Implications of Ramadan fasting in the setting of gastrointestinal disorders. *Cureus*. Mar 31;15(3).

53. Mahdi MS. (2025). Molecular Identification of Bacterial Spectrum and Determination of Some Immunological Markers Levels in Patients with Gall Bladder Inflammation.

54. Thoolen B, Chelur S, Maroppat RR. Liver, Gallbladder, and Exocrine Pancreas. *Toxicologic Pathology*.

55. Teixeira FA, Aicher KM, Duarte R. (2024). Nutritional Factors Related to Canine Gallbladder Diseases—A Scoping Review. *Veterinary Sciences*.

56. Singh L, Mustaqueem SF, Singh P, Jaiswal P, Mohd T, et al., (2025). Serum Lipid Abnormalities in Pre-malignant and Malignant Lesions of the Gall Bladder. *Cureus*. Aug 16;17(8).

57. Patel R, Tse JR, Shen L, Bingham DB et al. (2024). Improving diagnosis of acute cholecystitis with US: New paradigms. *Radio Graphics*.

58. Rana P, Gupta P, Kalage D, Soundararajan R, Kumar-M P, Dutta U. (2022). Grayscale ultrasonography findings for characterization of gallbladder wall thickening in non-acute setting: a systematic review and meta-analysis. *Expert Review of Gastroenterology & Hepatology*. Jan 2;16(1):59-71.

59. Martínez Márquez RD, Cienfuegos Alvear JA, Torres Monarrez AA, Alpízar Cruz RD. (2025). Acute cholecystitis and acute cholangitis: the radiologist's role in diagnosis and management. *Abdominal Radiology*. Jul 29:1-6.

60. Santos e Silva A, Sequeira M, Inês Santos M, Silva L et al. (2023). Diagnostic Point-of-Care Ultrasound (POCUS) for Abdominal Pain: A Case of Tumefactive Sludge.

61. Dutta U, Gupta P, Yadav A. (2025). Gallstones and gallbladder disorders. *Hepatology*.

62. Olaru ML, Barbu BF. (2024). Physiological and pathological considerations on the gall bladder. Annals of the university of craiova, Biology, Horticulture, Food products processing technology, *Environmental engineering*. Nov 26;29(65).

63. Siva Siddhanth Y. (2024). Sonographic evaluation of gallbladder morphology and motility in type 2 diabetes mellitus—a case control observational study.

64. Li H. (2025). Radiology of Hepatobiliary Diseases.

65. A. J. Nivelstein R, G. F. Robben S, G. Blickman J. (2010). Hepatobiliary and pancreatic imaging in children—techniques and an overview of non-neoplastic disease entities.

66. Gupta P, Dutta U, Rana P, Singhal M, Gulati A, et al., (2022). Gallbladder reporting and data system (GB-RADS) for risk stratification of gallbladder wall thickening on ultrasonography: an international expert consensus. *Abdominal Radiology*. Feb;47(2):554-565.

67. Lambert G, Samra NS. (2023). Anatomy, abdomen and pelvis, retroperitoneum. *Stat Pearls*.

68. Boekestijn B, Wasser MN, Mieog JS, DeRuiter MC. (2024). Retroperitoneum revisited: a review of radiological literature and updated concept of retroperitoneal fascial anatomy with imaging features and correlating anatomy. *Surgical and Radiologic Anatomy*. Aug;46(8):1165-1175.

69. Gaballah AH, Algazzar M, Kazi IA, Badawy M, Guys NP, et al., (2024). The peritoneum: anatomy, pathologic findings, and patterns of disease spread. *Radiographics*. Aug 1;44(8): e230216.

70. Walkowska J, Zielinska N, Karauda P, Tubbs RS, Kurtys K, Olewnik Ł. (2022). The pancreas and known factors of acute pancreatitis. *Journal of clinical medicine*. Sep 22;11(19):5565.

71. Layegh P, Mahdavi Rafie A, Doostparast A. Gastric Volvulus, Pancreatic Volvulus, and Wandering Spleen (2025). A Rare Emergency Triad Behind Acute Abdomen. *Clinical Case Reports*. Oct;13(10): e71007.

72. Krell M, Sohail AH, Williams CE, Winner M, Allendorf J. (2023). Pancreas and Spleen. InThe ABSITE Blueprints Sep 24 (pp. 101-136). Cham: *Springer International Publishing*.

73. Takahashi Y, Matsuo K, Oyama H, Sekine R, Nakamura A, Uchida T, Makuchi M, Tanaka K. (2022). Superior mesenteric vein reconstruction during pancreateoduodenectomy using a dilated right ovarian vein in a patient at future risk for pelvic congestion syndrome: a case report. *Surgical Case Reports*. Apr 13;8(1):67.

74. Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, et al., (2024). Pancreatic morphology, immunology, and the pathogenesis of acute pancreatitis. *Biomedicines*. Nov 17;12(11):2627.

75. Benbrahim FZ, Essolaymany Z, Chaouche I, Akammar A, Haloua M, et al., (2025). Wandering spleen torsion with splenic vein thrombosis: A case report. *Radiology Case Reports*. Nov 1;20(11):5474-5477.

76. Klimkowski SP, Fung A, Menias CO, Elsayes KM. (2022). Gallbladder imaging interpretation pearls and pitfalls: ultrasound, computed tomography, and magnetic resonance imaging. *Radiologic Clinics*. Sep 1;60(5):809-824.

77. Roa JC, García P, Kapoor VK, Maithel SK, Javle M, Koshiol J. (2022). Gallbladder cancer. *Nature reviews Disease primers*. Oct 27;8(1):69.

78. Yin Y, Yakar D, Slangen JJ, Hoogwater FJ, Kwee TC, de Haas RJ. (2023). Optimal radiological gallbladder lesion characterization by combining visual assessment with CT-based radiomics. *European Radiology*. Apr;33(4):2725-2734.

79. Obaid AM, Turki A, Bellaaj H, Ksantini M, AlTaee A, Alaerjan A. (2023). Detection of gallbladder disease types using deep learning: An informative medical method. *Diagnostics*. May 15;13(10):1744.

80. Calabro' A, Abdelhafez YG, Triumbari EK, Spencer BA, Chen Jr MS, et al., (2023). 18F-FDG gallbladder uptake: observation from a total-body PET/CT scanner. *BMC Medical Imaging*. Jan 10;23(1):9.

81. Liu H, Lu Y, Shen K, Zhou M et al. (2024). Advances in the management of gallbladder polyps: establishment of predictive models and the rise of gallbladder-preserving polypectomy procedures. *BMC gastroenterology*.

82. Cai D, Sundar Parajuly S, Wang H, Wang X et al. (2016). Accuracy of contrast-enhanced ultrasound compared with conventional ultrasound in acute pancreatitis: Diagnosis and complication monitoring.

83. Meier J, Lucius C, Möller K, Jenssen C. (2024). Pancreatic ultrasound: An update of measurements, reference values, and variations of the pancreas. *Ultrasound*.

84. Elmeneza SA, Hassan NF, Mohamed AR. (2024). Pancreatic Ultrasound in High-risk Neonates. *General Resuscitation*.;20(5):31-36.

85. Song Qing, Tang Jie, Ly Faqin, Zhang Yan et al. (2013). Evaluation of blunt pancreatic injury with contrast-enhanced ultrasonography in comparison with contrast-enhanced computed tomography.

86. James ND, Tannock I, N' Dow J, Feng F, Gillessen S, et al., (2024). The Lancet Commission on prostate cancer: planning for the surge in cases. *The Lancet*. Apr 27;403(10437):1683-1722.

87. Stoffel EM, Brand RE, Goggins M. (2023). Pancreatic cancer: changing epidemiology and new approaches to risk assessment, early detection, and prevention. *Gastroenterology*.

88. Klöppel G, Zamboni G. (2023). Acute and chronic alcoholic pancreatitis, including paraduodenal pancreatitis. *Archives of Pathology & Laboratory Medicine*. Mar 1;147(3):294-303.

89. Miller FH, Lopes Vendrami C, Recht HS, Wood CG, Mittal P, et al., (2022). Pancreatic cystic lesions and malignancy: assessment, guidelines, and the field defect. *Radio graphics*. Jan;42(1):87-105.

90. Coban S, Basar O, Brugge WR. (2022). Pancreatic cystic neoplasms. *Gastroenterology Clinics*.

91. Esposito I, Haeberle L. (2022). Nonmucinous cystic lesions of the pancreas. *Archives of Pathology & Laboratory Medicine*. Mar 1;146(3):312-321.

92. Gonda TA, Cahen DL, Farrell JJ. (2024). Pancreatic cysts. *New England Journal of Medicine*. Sep 5;391(9):832-843.

93. D'Onofrio M, Beleù Alessandro, De Robertis R. (2019). Ultrasound-guided percutaneous procedures in pancreatic diseases: new techniques and applications.

94. Smereczyński A, Kołaczyk K. (2018). Pitfalls in ultrasound imaging of the stomach and the intestines.

95. Solea SF, Brisc MC, Orășeanu A, Venter FC, Brisc CM, et al., (2024). Revolutionizing the pancreatic tumor diagnosis: emerging trends in imaging technologies: a systematic review. *Medicina*. Apr 24;60(5):695.

96. Furfaro F, Dal Buono A, Allocca M, D'Amico F et al. (2021). Bowel Ultrasound in Inflammatory Bowel Disease: How Far in the Grayscale?

97. Medellin A, Wilson SR. (2025). Bowel Ultrasound. *Radiologic Clinics*.

98. Möller K, Fischer P, Gilja OH, Gottschall H, Jenssen C, et al., (2025). Gastrointestinal Ultrasound: Measurements and Normal Findings—What Do You Need to Know? *Digestive Diseases*. Feb 21;43(3):300-335.

99. Su HY, Taylor KM, Friedman AB, Cataletti G, Maconi G. (2024). Ultrasound assessment of gastrointestinal luminal contents: a narrative review. *Journal of Ultrasound*. Dec;27(4):781-792.

100. Pruijt MJ, de Voogd FA, Montazeri NS, van Etten-Jamaludin FS, D'Haens GR, Gecse KB. (2024). Diagnostic accuracy of intestinal ultrasound in the detection of intra-abdominal complications in Crohn's disease: a systematic review and meta-analysis. *Journal of Crohn's and Colitis*. Jun 1;18(6):958-972.

101. Nishida M, Hasegawa Y, Hata J. (2023). Basic practices for gastrointestinal ultrasound. *Journal of medical ultrasonics*.

102. Seiler GS, Cohen EB, d'Anjou MA, French J, Gaschen L, et al., (2022). ACVR and ECVDI consensus statement for the standardization of the abdominal ultrasound examination. *Veterinary Radiology & Ultrasound*. Nov;63(6):661-674.

103. Hwang M, Tierradentro-García LO, Dennis RA, Anupindi SA. (2022). The role of ultrasound in necrotizing enterocolitis. *Pediatric Radiology*. Apr;52(4):702-715.

104. Gómez Martín N, Domínguez Miño E, García de Carellán A, Vilalta Solé L. (2024). Abdominal ultrasound features and reference values in healthy guinea pigs (Cavia porcellus). *Veterinary Record*. Jan 20;194(2).

105. Kanlerd A, Auksornchart K, Boonyasatid P. (2022). Non-operative management for abdominal solid organ injuries: A literature review. *Chinese Journal of Traumatology*. Sep 1;25(05):249-256.

106. Golibjon Karshievich E, Xursandovich SK, Uzakovich RN, Murodulloyevich XO. (2024). Diagnostic Methods for Abdominal Injuries. *Universal Science Perspectives International Scientific Practical Journal*. Oct 7;1(1).

107. Vasin D, Pavlović A, Spasojević N, Mišković B, Marićić B. (2023). Ultrasound in Assessing Acute Abdomen. *Journal of Surgery*;8(3).

108. Penny SM. (2022). Examination Review for Ultrasound: *Abdomen and Obstetrics & Gynecology*.

109. Radonjić T, Popović M, Zdravković M, Jovanović I, Popadić V, et al., (2022). Point-of-care abdominal ultrasonography (POCUS) on the way to the right and rapid diagnosis. *Diagnostics*. Aug 24;12(9):2052.

110. Kurra P, Teeparth S. (2025). Emerging Techniques in Management of Biliary Tract. Biliary Tract: Disease, Treatment, and Quality of Life. Aug 20:63.

111. Jung JH, Lee KJ, Park SW, Koh DH et al. (2025). Point-of-care testing and biomarkers in biliary diseases: current evidence and future directions. *Journal of Clinical Medicine*.

112. Chacon MA, Wilson NA. (2023) The challenge of small intestine length measurement: a systematic review of imaging techniques. *Journal of Surgical Research*.

113. Rimola J, Torres J, Kumar S, Taylor SA et al. (2022). Recent advances in clinical practice: advances in cross-sectional imaging in inflammatory bowel disease. *Gut*.

114. McCallum G, Tropini C. (2024). The gut microbiota and its biogeography. *Nature Reviews Microbiology*.

115. Merkel D, Züllich TF, Schneider C, Yousefzada M, Beer D, et al., (2023). Prospective comparison of handheld ultrasound devices from different manufacturers with respect to B-scan quality and clinical significance for various abdominal sonography questions. *Diagnostics*. Dec 8;13(24):3622.

116. Slouha E, Biput SJ, Kalloo AE, Gorantla VR, Gorantla VR. (2023). Non-alcoholic fatty liver disease and gallstones: a systematic review. *Cureus*. Sep 11;15(9).

117. Konya P, Alshuwaykh O, Dennis BB, Cholankeril G, Ahmed A, Kim D. (2023). Gallstone disease and its association with nonalcoholic fatty liver disease, all-cause and cause-specific mortality. *Clinical Gastroenterology and Hepatology*. Apr 1;21(4):940-948.

118. Cho T, Fukunaga S, Ohzono D, Tanaka H, Minami S, et al., (2025). Metabolic dysfunction-associated steatotic liver disease is a risk factor for gallstones: A multicenter cohort study. *Hepatology Research*. May;55(5):663-674.

119. Demarquoy J. (2025). Exploring the links between gallstone disease, non-alcoholic fatty liver disease, and kidney stones: A

path to comprehensive prevention. *World Journal of Gastroenterology*.

120. Frenette C, Mendiratta-Lala M, Salgia R, Wong RJ, Sauer BG, Pillai A. (2024). ACG clinical guideline: focal liver lesions. *Official journal of the American College of Gastroenterology|ACG*. Jul 1;119(7):1235-1271.

121. Cielma TK, Mirza S, Najim NI, Wolfe JL, Zember J. (2023). Unusual Progressive Hepatic Echogenicity of the Pediatric Liver Following Intravenous Sonographic Contrast Administration. *Journal of Diagnostic Medical Sonography*. Sep;39(5):508-516.

122. Maheshwari S, Gu CN, Caserta MP, Kezer CA, Shah VH, et al., (2024). Imaging of alcohol-associated liver disease. *American Journal of Roentgenology*. Jan;222(1): e2329917.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

[Submit Manuscript](#)

DOI:[10.31579/2692-9406/246](https://doi.org/10.31579/2692-9406/246)

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <https://www.auctoresonline.com/journals/biomedical-research-and-clinical-reviews>