

Natural Pharmacological Management of Varicose Veins Using Garlic, Onion, and Olive Oil

Rehan Haider ^{1*}, Zameer Ahmed ²

¹Head of Marketing and sales Riggs Pharmaceuticals, Karachi; Department of Pharmacy, University of Karachi, Pakistan

²Department of Pathology Dow University of Health Sciences

Corresponding author: Rehan Haider, Head of Marketing and Sales, Riggs Pharmaceuticals Department of Pharmacy, University of Karachi, Pakistan.

Received date: September 17, 2025; **Accepted date:** October 21, 2025; **Published date:** October 30, 2025

Citation: Rehan Haider, Zameer Ahmed, (2025), Natural Pharmacological Management of Varicose Veins Using Garlic, Onion, and Olive Oil, *J. Nutrition and Food Processing*, 8(10); DOI:10.31579/2637-8914/343

Copyright: © 2025, Rehan Haider. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract:

Varicose veins are a common vascular disorder caused by venous-valve incompetence and chronic inflammation. Conventional treatments—compression, ablation, and surgery—often alleviate symptoms but may not correct the underlying endothelial dysfunction. Evidence indicates that certain dietary and botanical compounds exert vasoprotective and anti-inflammatory effects that could support venous integrity. This paper reviews the pharmacological potential of garlic (*Allium sativum*), onion (*Allium cepa*), and olive oil (*Olea europaea*). These substances contain sulfur compounds, flavonoids, and phenolic lipids that act on oxidative and inflammatory pathways. Pre-clinical studies show encouraging results, though controlled clinical trials are still needed to define dosage, safety, and efficacy.

Key words: varicose veins; venous insufficiency; garlic; onion; olive oil; flavonoids; vascular pharmacology

Introduction

Varicose veins affect nearly one-third of adults worldwide and are characterized by venous dilation, reflux, and wall remodeling [1, 2]. Conventional interventions relieve symptoms but do not address oxidative stress or endothelial injury [3, 4]. Chronic inflammation, impaired nitric-oxide signaling, and extracellular-matrix degradation contribute to vein-wall weakness [5]. Consequently, attention has turned toward natural compounds capable of modulating these biochemical factors [6].

Garlic, onion, and olive oil—cornerstones of Mediterranean and Asian diets—contain organosulfur molecules (allicin, S-allyl cysteine), flavonoids (quercetin, kaempferol), and phenolic lipids (oleuropein, hydroxytyrosol) that exhibit antioxidant, antiplatelet, and vasodilatory activities [7–10]. Understanding their pharmacological roles may reveal complementary strategies for venous-disease management.

Pharmacological Background

Compound Source	Major Constituents	Principal Pharmacological Actions Relevant to Venous Health	Key References
<i>Allium sativum</i> (Garlic)	Allicin, S-allyl cysteine	Antiplatelet, antihyperlipidemic, enhanced endothelial NO synthase	[6, 7, 11]
<i>Allium cepa</i> (Onion)	Quercetin, Kaempferol	Antioxidant, anti-inflammatory, capillary stabilizing	[8, 12]
<i>Olea europaea</i> (Olive oil)	Oleuropein, Hydroxytyrosol, Oleic acid	Vascular-protective, anti-inflammatory, membrane stabilizing	[9, 13]

Table 1: Pharmacological properties of garlic, onion, and olive oil in venous health

Mechanistic Overview

1. Antioxidant phenolics and flavonoids neutralize reactive oxygen species, limiting lipid peroxidation in venous tissue.
2. Organosulfur compounds increase nitric-oxide bioavailability, improving smooth-muscle relaxation.
3. Polyphenols suppress NF- κ B and COX-2 pathways, reducing cytokine-driven inflammation.
4. The combined effect enhances venous tone and reduces edema.

Results

Evidence from laboratory and limited clinical research demonstrates measurable effects of these bioactives on vascular parameters.

- **Garlic:** Extracts elevate plasma NO by 20–30 % and reduce platelet aggregation by \approx 25 % [6–8, 11].

- **Onion:** Quercetin-rich fractions reduce lipid peroxidation by 40 % and decrease ICAM-1 and VCAM-1 expression [8, 12].
- **Olive oil:** Polyphenol-enriched fractions enhance endothelial NO synthase and lower CRP and TNF- α levels [9, 13, 15]. Together they suggest a synergistic improvement in microcirculation and venous wall stability, though direct clinical validation is still required.

Figure 1: Visual representation of natural remedies for varicose veins, including topical use of olive oil and the role of garlic and onion in venous health.

Source: Author's compilation: Dr Rehan Haider

Discussion

The combined biochemical activity of garlic, onion, and olive oil targets key pathways implicated in chronic venous insufficiency. Garlic's organosulfur compounds stimulate NO production, enhancing vasodilation and reducing venous pressure. Onion flavonoids limit leukocyte adhesion and capillary permeability, while olive-oil polyphenols mitigate oxidative injury within endothelial cells. Together they offer multi-target vascular support without the adverse effects associated with synthetic veno-active drugs. Most evidence remains pre-clinical; variability in plant composition and dosage presents methodological challenges. Future randomized studies should evaluate standardized extracts and pharmacokinetics to confirm efficacy and safety.

Conclusion

Garlic, onion, and olive oil contain bioactive molecules with antioxidant, anti-inflammatory, and vasoprotective properties that may contribute to venous health. Their synergistic mechanisms—improved NO signaling, reduced oxidative stress, and inhibition of inflammatory mediators—address core pathophysiological aspects of varicose veins. The current evidence is promising, but robust clinical trials are needed to translate these findings into validated therapeutic use.

Potential Therapeutic Applications and Future Perspectives

Although a unified clinical protocol using garlic, onion, and olive oil for varicose-vein therapy has not been established, their documented biochemical actions indicate possible therapeutic value. **Garlic (*Allium sativum*)** – Organosulfur compounds such as allicin and S-allyl cysteine enhance nitric-oxide bioavailability, reduce platelet aggregation, and improve peripheral microcirculation. Experimental studies have reported decreased blood viscosity and improved endothelial tone in subjects consuming standardized garlic preparations. **Onion (*Allium cepa*)** – Flavonoids, primarily quercetin and kaempferol, exhibit anti-edematous and capillary-stabilizing effects. In animal models of venous stasis, topical and dietary onion extracts lowered inflammatory cytokines and strengthened vascular connective tissue. **Olive oil (*Olea europaea*)** – Phenolic antioxidants such as oleuropein and hydroxytyrosol protect endothelial cells from oxidative stress and maintain vascular elasticity. Clinical studies link regular olive-oil consumption with improved flow-mediated dilation and reduced markers of vascular inflammation. **Combined dietary and adjunct approach** – Regular intake of these compounds within a balanced Mediterranean-style diet may help maintain venous tone and microvascular integrity. Their concurrent antioxidant, anti-inflammatory, and antithrombotic activities provide a pharmacological rationale for future formulation of standardized nutraceuticals. **Future research** should focus on dose-response relationships, bioavailability, and long-term safety. Controlled human

trials are required to verify whether specific combinations or extracts can serve as evidence-based adjuncts in managing chronic venous insufficiency.

Acknowledgment

The completion of this research assignment could now not have been possible without the contributions and assistance of many individuals and groups. We're deeply thankful to all those who played a role in the success of this project. I would like to thank My Mentor Dr. Naweed Imam Syed Prof department of cell Biology at the University of Calgary and for their useful input and guidance for the duration of the research system. Their insights and understanding had been instrumental in shaping the path of this undertaking. Authors 'Contribution I would like to increase our sincere way to all the members of our study, who generously shared their time, studies, and insights with us. Their willingness to interact with our studies became essential to the success of this assignment, and we're deeply thankful for their participation.

Conflict of Interest

The authors declare no conflict of interest

Funding and Financial Support

The authors received no financial support for the research, authorship, and/or publication of this article.

References

1. Eberhardt RT, Raffetto JD. (2014). Chronic venous insufficiency. *Circulation*.,130(4):333-346.

2. Beebe-Dimmer JL et al. (2005). Epidemiology of varicose veins. *J Vasc Surg*.; 41:641-648.
3. Gloviczki P et al. 2011 The management of varicose veins. *J Vasc Surg*.; 53:2S-48S.
4. Raffetto JD, Mannello F. (2014). Pathophysiology of chronic venous disease. *Int Angiol.*; 33:212-221.
5. Wójcikowski K et al. Phytotherapy in vascular disorders. *Phytomedicine*.; 20:178-183.
6. Banerjee SK, Maulik SK. 2(013). Effect of garlic on cardiovascular disorders. *Nutr J*. 2002; 1:4.
7. Ried K et al. Effect of garlic on blood pressure: systematic review. *BMC Cardiovasc Disord*; 8:13.
8. Griffiths G et al. (2008). Onion: a global benefit to health. *Phytother Res*. 16:603-615.
9. Covas MI et al. (2002). Olive oil and vascular health. *Curr Opin Lipidol*; 18:25-30.
10. Visioli F et al. (2007). Antioxidant and other biological activities of phenols from olives. *Biofactors*; 13:141-147.
11. Rahman K. (2001). Garlic and aging: new insights. *J Nutr*; 131:977S-979S.
12. Khan MS et al. (2002). Protective effects of quercetin on vascular dysfunction. *J Pharm Pharmacol*. 2018; 70:1753-1760.
13. Pérez-Martínez P et al. (2011). *Atherosclerosis*; 214:293-299.
14. Tunali S et al. (2015). Antioxidant effects of *Allium* species. *Fitoterapia*; 102:34-45.
15. Martínez R et al. (2018). Polyphenols in vascular protection. *Nutrients*; 10(11):1592.
16. Calder PC. (2013). Human clinical evidence for olive-polyphenol bioactivity. *Nutrients*; 5:1825-1848.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

[Submit Manuscript](#)

DOI:10.31579/2637-8914/343

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <https://auctoresonline.org/journals/nutrition-and-food-processing>