

Type 2 Diabetes Mellitus and *Strongyloides Stercoralis* Infection

Gilberto Bastidas ^{1*}, Daniel Bastidas ², Geraldine Bastidas-Delgado ³

¹Department of Public Health and Institute of Biomedical Sciences, Faculty of Health Sciences, University of Carabobo, Venezuela.

²Department of Public Health, Faculty of Health Sciences, University of Carabobo, Venezuela.

³School of Medicine, Faculty of Health Sciences, University of Carabobo, Venezuela.

***Corresponding Author:** Gilberto Bastidas, Department of Public Health and Institute of Biomedical Sciences, Faculty of Health Sciences, University of Carabobo, Venezuela.

Received date: December 08, 2025; **Accepted date:** December 30, 2025; **Published date:** January 07, 2026

Citation: Gilberto Bastidas, Daniel Bastidas, Geraldine B. Delgado (2026), Type 2 Diabetes Mellitus and *Strongyloides Stercoralis* Infection, *J Clinical Research and Reports*, 23(1); **DOI:**[10.31579/2690-1919/604](https://doi.org/10.31579/2690-1919/604)

Copyright: © 2026, Gilberto Bastidas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that causes severe complications in those affected. Its prevalence is increasing considerably worldwide, especially in low- and middle-income countries due to urbanization and migration, many of which are located in tropical and subtropical regions where helminths, such as *Strongyloides stercoralis*, are highly endemic. These helminths are believed to be involved in the immunomodulation of T2DM and even in its complications. The objective of this paper is to present concise information on this topic, based on an analysis of the existing scientific literature on the subject.

Kew Words: diabetes mellitus; *Strongyloides stercoralis*; infection; helminths; metabolic disorder

Introduction

Type 2 diabetes mellitus (T2DM) is a major public health problem (an estimated 537 million adults worldwide between 20 and 79 years of age suffer from this disease, representing 10.5% of the population in this age group) because its incidence is increasing in low- and middle-income countries (due to increased urbanization and migration) and because of the severe macrovascular (peripheral and coronary vascular disease), microvascular (renal and retinal disease), and neuropathic complications it produces in affected individuals. T2DM is a metabolic disorder characterized by persistent hyperglycemia, chronic low-grade systemic inflammation with a predominance of Th1 cells, and intestinal microbial dysbiosis. Furthermore, comorbidity between T2DM and pathogens such as parasites is frequent, particularly where these are endemic [1-7].

In this regard, it has been noted that some parasites, particularly helminths (*Schistosoma* spp., geohelminths [including *Ascaris lumbricoides*, *Trichuris trichiura*, *Ancylostoma duodenale*], and filarial nematodes), improve insulin sensitivity and metabolic function against the development of type 2 diabetes based on their ability to regulate the gut microbiota and innate and adaptive immune responses (in order to ensure their survival in the host). Consequently, these parasites are believed to protect against T2DM in an inversely proportional relationship [8-16].

Among the geohelminths involved in the immunoregulation of T2DM, *Strongyloides stercoralis* deserves special mention due to its prevalence exceeding 600,000,000 infected individuals (primarily in tropical and subtropical regions), its status as a neglected tropical disease, its complex life cycle (free-living and autoinfection), its capacity to parasitize the host

for decades, the fact that its chronic form is usually asymptomatic, and because its severe forms (hyperinfection syndrome and disseminated strongyloidiasis), mainly in immunocompromised individuals, are fatal in 70% of cases [4, 17-19]. The objective of this literature review is to demonstrate the association between *S. stercoralis* infection and T2DM.

Association between T2DM and *S. stercoralis* infection

There is an inversely proportional association between *S. stercoralis* infection and T2DM, according to several research reports, involving nutrition, intestinal homeostasis (modification of intestinal microbial diversity), and the immunoregulatory response. Regarding the latter, the parasites alter the Th1/Th2 immune polarization, with the consequent reduction in the systemic concentration of proinflammatory cytokines (IL-4 over IL-17, TNF- α , and IFN- γ) and the shift in the macrophage pattern to M2, modulating inflammation [4, 9, 20].

One of the mechanisms underlying the development of T2DM is chronic inflammation characterized by the production of pro-inflammatory cytokines and chemokines, leading to increased insulin resistance. However, helminth infections are characterized by the induction of a type 2 immune response, leading to the production of regulatory cytokines, which can modulate inflammation [4, 12, 22].

The protective association of *S. stercoralis* in T2DM appears to extend beyond this, limiting the development of complications in various organs, particularly vascular complications. However, the physiological mechanism involved and the role of *S. stercoralis* in the development of

multimorbidity complications, especially kidney disease, remain unknown. This is due to numerous unknown variables, such as the duration of infection, parasite load, age of participants, geographic distribution, and even cultural and dietary habits [4, 21-23].

S. stercoralis, however, is considered a risk factor for morbidity in humans, primarily kidney disease, possibly related to the increased deposition of immune complexes of this parasite's antigens in the kidneys and also to the production of uremic toxins that end up in the kidney due to the alteration of intestinal microbial diversity experienced by the host with the parasitic infection. In any case, further studies on both pathophysiological processes are required [4, 24, 25].

Conclusion

The geohelminth *S. stercoralis* protects against T2DM by modulating the host's immune system, specifically by modifying the Th1/Th2 polarization. This alters the secretion of specific types of systemic cytokines, chemokines, and adipokines, as well as the biochemical parameters that counteract insulin resistance. Furthermore, the parasite has a beneficial effect on the diabetic host, reducing the occurrence of complications, especially vascular ones, although the mechanism involved is largely uncertain. However, the parasitic infection poses a risk of kidney disease due to the deposition of antigen-containing immune complexes in the kidney.

Conflict of interests

The authors have no conflict of interest to declare. The authors declared that this study has received no financial support.

References

1. Hu J, Zhang R, Zou H, Xie L, Zhou Z, Xiao Y. (2022). Latent autoimmune diabetes in adults (LADA): From immunopathogenesis to immunotherapy. *Front Endocrinol (Lausanne)*. 13:917169.
2. Mazzaro M, Santos É, Melo G, Marques P, Souza L, Elias-Oliveira J, et al. (2022). Importance of detection of *Strongyloides stercoralis* DNA in fecal samples from patients with type 2 diabetes mellitus. *Clinics (Sao Paulo)*. 77:100060.
3. Yingklang M, Chaidee A, Dangtakot R, Jantawong C, Haonon O, Sitthirach C, et al. (2022) Association of *Strongyloides stercoralis* infection and type 2 diabetes mellitus in northeastern Thailand: Impact on diabetic complication-related renal biochemical parameters. *PLoS One*. 17(5):e0269080.
4. Bastidas G, Bastidas D, Bastidas-Delgado G, Rosales M. (2020). Glucose-6-Phosphate Dehydrogenase deficiency a balanced polymorphism between resistance to malaria infection and hematological abnormalities. *SunText Rev Biotechnol*. 1(2): 108.
5. Bastidas G, Bastidas D. (2023). Nutritional disorder in malaria infection. Paper to be clarified. *Acta Scientific Nutritional Health*. 7(11):38-39.
6. Bastidas G. (2023). Caution in the association between helminths and severe COVID-19. *J Clin Images Med Case Rep*. 4(8): 2539.
7. Wiria A, Hamid F, Wammes L, Prasetyani M, Dekkers O, May L, et al. (2015). Infection with soil-transmitted helminths is associated with increased insulin sensitivity. *PLoS One*. 10(6):e0127746
8. Khudhair Z, Alhallaf R, Eichenberger R, Whan J, Kupz A, Field M, et al. (2020). Gastrointestinal helminth infection improves insulin sensitivity, decreases systemic inflammation, and alters the composition of gut microbiota in distinct mouse models of type 2 diabetes. *Front Endocrinol (Lausanne)*. 11:606530.
9. Rennie C, Fernandez R, Donnelly S, McGrath K. (2021). The impact of helminth infection on the incidence of metabolic syndrome: A systematic review and meta-analysis. *Front Endocrinol (Lausanne)*. 12:728396.
10. Dai M, Yang X, Yu Y, Pan W. (2022). Helminth and host crosstalk: New insight into treatment of obesity and its associated metabolic syndromes. *Front Immunol*. 2022.13:827486.
11. Sibi J, Mohan V, Munisankar S, Babu S, Aravindhan V. (2021). Augmented innate and adaptive immune responses under conditions of diabetes-filariasis comorbidity. *Front Immunol*. 12:716515.
12. Amer A, Othman A, Dawood L, El-Nouby K, Gobert G, Abou Rayia D. (2023). The interaction of *Schistosoma mansoni* infection with diabetes mellitus and obesity in mice. *Sci Rep*. 13(1):9417.
13. Bastidas G, Peña M, Bastidas D, Bastidas-Delgado G. (2024). Nutritional and endocrine disorders of protozoan infections. *Acta Scientific Nutritional Health*. 8(9):01-02.
14. Bastidas G. (2024). Key innate immune response in the progress or elimination of infection by *Leishmania* spp. *Epidemiology International Journal*. 8(2):000278.
15. Bastidas G, Bastidas D, Bastidas-Delgado G. (2025). Involvement of parasites in host cardiometabolic disorders. *Journal of Endocrinology and Disorders*. 9(5):
16. Miglioli-Galvao L, Pestana J, Santoro-Lopes G, Torres Goncalves R, Requia Moura L, Pacheco Silva A, et al. (2020). Severe *Strongyloides stercoralis* infection in kidney transplant recipients: A multicenter case-control study. *PLoS Negl Trop Dis*. 14(1):e0007998.
17. Karanam L, Basavraj G, Papireddy C. (2021). *Strongyloides stercoralis* hyper infection syndrome. *Indian J Surg*. 83(Suppl 3):582-586.
18. Wang Z, Guo J, Liu J. (2023). *Strongyloides* hyperinfection syndrome and cytomegalovirus infection in a patient with type II diabetes mellitus. *New Microbiol*. 46(1):86-89.
19. Zhang B, Gems D. (2021). Gross ways to live long: Parasitic worms as an anti-inflammatory therapy? *eLife*. 10:e65180.
20. Rajamanickam A, Munisankar S, Dolla C, Menon P, Thiruvengadam K, Nutman T, et al. (2020). Helminth infection modulates systemic pro-inflammatory cytokines and chemokines implicated in type 2 diabetes mellitus pathogenesis. *PLoS Negl Trop Dis*. 14:8101.
21. Rajamanickam A, Munisankar S, Menon P, Nutman T, Babu S. (2021). Diminished circulating levels of angiogenic factors and rage ligands in helminth-diabetes comorbidity and reversal following anthelmintic treatment. *J Infect Dis*. 224(9):1614-22.
22. Tiongco R, Flores J, Castro E, Dayrit S, Dominguez M, Manahan E, et al. (2024). Association of *Strongyloides stercoralis* infection with the development of diabetes mellitus: a meta-analysis. *J Helminthol*. 98:e86.
23. Salvador F, Galvis D, Treviño B, Sulleiro E, Sánchez-Montalvá A, Serre-Delcor N, et al. (2023). Imported *Strongyloides stercoralis* infection and diabetes mellitus and other metabolic diseases: Is there any association? *Trop Med Int Health*. 28(3):232-236.
24. Fu W, Peng N, Geng Y. (2025). Fecal microbiota transplantation as salvage therapy for disseminated

strongyloidiasis in an immunosuppressed patient: a case report.
Front Immunol.16:1676906.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: [Submit Manuscript](#)

DOI:[10.31579/2690-1919/604](https://doi.org/10.31579/2690-1919/604)

Ready to submit your research? Choose Auctores and benefit from:

- fast; convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate; unrestricted online access

At Auctores; research is always in progress.

Learn more <https://www.auctoresonline.org/journals/journal-of-clinical-research-and-reports>