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Abstract 

The global population is undergoing an expanding epidemic of T2DM. Insulin resistance (IR) is at its center. IR is 
linked to many age-accelerating hormones and magnesium deficiency (MgD) is tightly linked to IR. Deficiencies 
of multiple vitamins, including A, B1-3,5,6,9,13, D, and E are tied to MgD, as Mg is linked to their activation. 
Optimal signaling of Mg dependent G-protein coupled receptors (GPCRs), the largest family of membrane proteins, 
extends healthspan. 

Indeed, Mg is critical to most human metabolic functions. MgD increases the kynurenine to tryptophan (K/T) and 
the Ca:Mg ratios, both biomarkers for inflammaging, and has a strong connection to many cancers, cardiovascular 
disease (CVD), dementia, autoimmune/infectious disease, and obesity. Short chain fatty acids (SCFAs) are 
harbingers of optimal health and over 90% of them are produced by gut bacteria. However, these bacteria need Mg 
to produce butyrate, propionate, and acetate, as they do for secondary bile acids and indoles, known longevity 
agents. Mg also enables solar driven production of vitamin D3 in skin. Yet despite these associations between 
accelerated aging/healthspan and MgD, laboratory reference ranges for serum Mg (~0.75-0.95 mmoles/L) continue 
to overlook clinical MgD (migraines and premenstrual syndrome ~ 0.75-0.85 mmoles/L). Mg depleted soil and 

Western diets further exacerbate the epidemic, as does decreased absorption with age. The physiologic capacity of 
Mg is extensive and complex. Accordingly, this limited but focused narrative review attempts to link some of the 
deleterious effects of a long-term Mg shortfall with the premature symptoms of aging and a shortened healthspan. 
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Introduction 

Healthspan measures not the number of years a person lives (lifespan) but 

the number in good health. Similarly, healthcare accentuates prevention 

and lifestyle modifications, while medical care is more reactive, 

accentuating treatment. MgD may represent the great divide. For 

example, Mg dependent GPCRs are the largest family of membrane 

proteins (800) encoded in the human genome. GPCRs are an important 

drug target, as over ⅓ of all Food and Drug Administration (FDA) 

approved drugs target GPCRs [1]. Aging is the result of a complex 

combination of many pathophysiological processes. Mg deficiency can 

accelerate many symptoms of aging, frequently called the dwindles, from 

diminishing recall [2], to sight, taste, smell, behavior, mood, immune 

system regulation, fatigue, depression, loss of appetite [3], and sarcopenia 

[4]. to a shorter lifespan. Mg is a required cofactor for over 600 different 

enzymes, It is required for the activation of perhaps another 200. A small 

subset of these enzymes involves ATP and energy metabolism. Mg is also 

required for the vast majority of functions involving GTP, which drives 

GPCR signaling. 

Several prominent hormones have been implicated as accelerants. IR due 

to Mg deficiency may represent the primary, consolidating feature. 

Appreciation for the vital role of Mg in health and disease is becoming 

mainstream. Initially this was limited to its function as a required cofactor 

for many enzymes. That list has continued to grow. Its criticality to 

reactions involving ATP/GTP and their cousins ADP, cAMP, GDP, and 

cGMP is less widely appreciated. ATP driven reactions and GPCR driven 

transmembrane/intracellular signaling deteriorate with age. 

Optimal signaling plays a vital role in maintaining glucose homeostasis 

and preventing IR [5], thereby extending healthspan [6]. Accordingly, 

interest in Mg status as a determinant of and prognosticator for aging and 

healthspan is rapidly expanding [7]. 
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The linkage between aging and magnesium deficiency has only recently 

been exposed [8]. The present perspective is much more reliant on a 

biochemical and physiologic approach. Although accepted and well 

established, many of the interlinking details presented in this review are 

not well known and have only recently been revealed. Research on this 

topic was limited to a search of peer reviewed medical journal articles for 

relevant terms. 

I. MgD and inflammaging/oxidative stress/insulin resistance 

MgD plays a multifactorial role in promoting IR. It is not only associated 

with β-cell-dysfunction-induced IR [9], but also post receptor IR. Chronic 

inflammaging is at the heart of this. The intimacy of Mg and the glycolytic 

pathway is underscored by Mg dependency of over half the enzymes. 

MgD is tightly linked to mitochondrial dysfunction and an electron 

transport chain that relies on Mg dependent NAD and FAD with 

consequent increase in ROS and oxidative stress [10]. 

Mg suppresses NF-kB, an inflammatory transcription factor, via blockade 

of Ca channels [11]. MgD induces a pro-inflammatory state with 

elevations of pleiotropic cytokines, e.g., IL-1, IL-6, TNF-α [12]. 

Hypothetically these changes may work in concert with an elevated K/T 

to up-regulate pleiotropism - TGF-β transits from anti-tumor to 

tumorigenic and desmoplastic in the tumor microenvironment [13,14], 

while IFN-γ transits from anti-inflammatory to pro-inflammatory, driving 

autoimmune disease [15], and dementia [16]. Butyrate, a SCFA that 

characterizes a healthy gut microbiome, immuno-modulates IFN-γ (17) 

and TGF-β (transforming growth factor), which are reciprocals and 

counterbalance each other [18,19]. 

The direct link between MgD and IR is well documented. The growing 

global incidence of IR plays a key role in the development of T2DM, 

cardiovascular diseases, and obesity-related conditions [20,21]. It is also 

directly linked to many age accelerating hormones. 

II. IR and Age Accelerating Hormones 

MgD enhances the ill effects of ACTH, GH, TSH, angiotensin II, 

aldosterone, and obesity, well known age accelerating hormones. GPCRs 

are well known cell membrane receptors, but recently intracellular 

GPCRs on endoplasmic reticulum (ER), mitochondria, and other 

organelles [22], have been described, further expanding the impact of 

MgD. ACTH directly induces IR [23], and IR elevates ACTH, GH, TSH, 

RAAS and obesity, [24]. Cortisol, induced by stress, may be the primary 

culprit [25,26,27,28]. Furthermore, 11β-hydroxysteroid dehydrogenase 

type 2 (11β-HSD2), that converts active cortisol to its inactive form, 

cortisone, is Mg-dependent [29].  

The relationship between MgD and growth hormone releasing hormone 

receptor (GHRHR) versus Insulin-like Growth Factor-1 Receptor (IGF-

1R) is complex. GH and IGF-1 have a reciprocal (negative feedback) 

relationship. GH is considered a longevity agent, and the offspring of 

centenarians generally have lower IGF-1 levels [30]. GHRHR is a Mg 

dependent GPCR, while IGF-1R is a Mg dependent receptor tyrosine 

kinase (RTK). MgD may down-regulate RTK and IGF-1 more than 

GHRHR (GPCR) and GH. This may disrupt the feedback loop to the point 

of GH resistance [31]. GH resistance may be likened to IR, which 

involves GPCRs that modulate glucose-induced insulin secretion and 

insulin receptors that are RTKs. 

IR is linked to hyperthyroidism [32]. Thyroid hormones T3 and T4 

maintain a fine balance of glucose homeostasis by acting as insulin 

agonist and antagonist [33]. Both hypothyroidism and hyperthyroidism 

can increase IR, not only in overt thyroid dysfunction but also in 

subclinical disorders or even alterations of hormone levels in the reference 

range (like Mg) [34]. 

Hyperthyroidism may also increase magnesuria [35]. RAAS activity and 

IR have a positive bidirectional relationship [36,37]. Secretion of 

angiotensin II and aldosterone are Ca dependent processes. Mg is a Ca 

channel blocker [38]. Aldosterone may not only increase blood pressure 

but also increase magnesuria [39], underscoring the importance of 

hydration. Thus, the relationship between RAAS and MgD is also 

bidirectional. Increased RAAS activity, MgD, and IR all conspire to 

accelerate aging [40,41]. 

Obesity can cause IR [42]. One study on long-term obesity demonstrated 

accelerated aging that exceeded chronological age by 15% to 48% [43]. 

IR can lead to obesity, i.e., the relationship is bidirectional [44]. Obesity 

is independently linked to MgD [45], and irrespective of obesity, 

hyperglycemia is associated with hypomagnesemia [46]. Direct 

correlation of obesity with MgD is dependent on fat distribution - higher 

correlation in central obesity and lower in peripheral obesity [47]. 

III. MgD and ATP/GTP, GPCRs 

GPCR signaling directly impacts aging [48], and impacts vision, taste, 

smell, memory, mood, sleep, hormones, neurotransmission, and many 

other functions [49]. There are two types of GPCR's - GTP dependent and 

GTP independent. The vast majority of GPCRs are GTP dependent, while 

most GTP independent GPCRs are kinase dependent. All GTP dependent 

GPCRs require Mg, and the vast majority of kinases are Mg dependent. 

Although GPCRs are primarily cell membrane localized, some have 

intracellular capabilities, affecting learning and memory [50], pain (ER) 

[51].and energy (mitochondria) [52]. 

Although MgD should theoretically reduce the intracellular GPCR 

activity, it appears that MgD has a greater impact downstream. As a 

calcium channel blocker, the absence of sufficient intracellular Mg 

enables overexpression of some Ca-mediated, age accelerating hormones, 

e.g., angiotensin II, catecholamines [53,54]. The primary mechanism is 

the chronic inflammation, oxidative stress, and cellular senescence that 

they induce. 

IV. MgD and K/T, Ca:Mg, Gut Microbiome 

A. K/T 

In a 2023 poll of over 1000+ Americans aged 18 or older, ⅔ suffer some 

degree of gut dysbiosis or imbalanced gut microbiota. An elevated K/T is 

tightly linked to gut dysbiosis [55]. 

Given the indiscriminate use of antibiotics, Candida overgrowth may be 

a leading culprit in causing gut dysbiosis. Candida albicans can produce 

its own indoleamine dioxygenase (IDO) that governs the rate limiting step 

in conversion of tryptophan to kynurenine (see figure 1). IFN-γ 

upregulates IDO and plays a prominent role in the “tryptophan steal” that 

drives the kynurenine pathway. This reduces indole pathway activity, 

compromising production of multiple longevity agents produced by 

intestinal microbiota. Tryptophan hydroxylase is the rate-limiting enzyme 

for the serotonin pathway and involves the conversion of tryptophan to 5-

hydroxytryptophan. This enzyme can be inhibited by stress, IR, MgD, 

vitamin B6 deficiency, or increasing age. The result is often some degree 

of depression and insomnia [56]. 

Mg is required for conversion of neurotoxic quinolinic acid to NAD by 

quinolinate phosphoribosyl transferase [57]. (see figure 1). Other 

kynurenine pathway metabolites are also neurotoxic and can trigger N-

methyl-D-aspartate (NMDA) receptors. Mg inhibits these glutamatergic 

excitatory receptors by blocking calcium channels [58]. 
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Figure 1: Altered tryptophan metabolism (ATM) is demonstrated. NMDA-R is an excitatory glutamate receptor. Note the upregulating presence of 

the proinflammatory cytokine IFN-γ driving ATM. 

ATM is tightly correlated with cancer, dementia, CVD, obesity, 

autoimmune/infectious disease (including COVID-19 complications), 

and post-COVID syndrome [59]. 

B. Ca:Mg 

Ca and Mg compete for the same receptors, the calcium sensing receptor 

(CaSR), which is also a Mg dependent GPCR, and the transient receptor 

potential melastatin 7 (TRPM7), a Mg dependent kinase that regulates an 

ATP-Mg dependent channel. An elevated Ca:Mg plagues those partial to 

processed foods and carbonated colas. According to NHANES, this ratio 

has continuously exceeded 3.0 since 2000. Jean Durlach founded the 

International Society for Magnesium Research in 1970. In 1989 he 

established 2.0 weight to weight intake as the target ratio based on 

physiologic considerations. Authorities in Mg research have repeatedly 

reinforced this figure based on clinical grounds [60]. 

Ca:Mg > 5.0 was strongly linked with death from COVID-19 [61]. Given 

the fact that hypocalcemia is a biomarker for Covid-19 hospitalization, 

MgD must be severe to induce such elevated Ca:Mg ratios in those with 

severe COVID-19 [62]. This may reflect dysfunctional Mg dependent 

CaSRs and deficient Mg dependent vitamin D. Odds ratios for cancer, 

dementia, CVD, obesity, autoimmune/infectious disease (including 

COVID-19 complications), and post-COVID syndrome increase when 

imbalanced and outside the recommended 1.7<Ca:Mg<2.6 range weight 

to weight [60,63]. 

Evaluating Mg status is complicated due to the competition between iCa 

and iMg for the same receptor (CaSR and TRPM7). The Ca:Mg ratio is 

the only biomarker that accurately reflects this. This ratio, calculated by 

comparing serum Ca with serum Mg after converting from mg/dL to 

mmoles/L and adjusting for ionization rates, should range from 1.7 to 2.6 

in healthy individuals. 

1. Comparing the laboratory reference range for serum iCa (4.5–

5.6 mg/dL or 1.1–1.4 mmol/L) with the reference range for total 

serum Ca yields about 53% ionization, using 8.5 - 10.5 mg/dL 

or 2.125 - 2.625 mmol/L for total serum Ca 

2. This ionization rate is about 71% for Mg, using ion sensitive 

probe .54-.67 mmol/L [64], and 1.8 - 2.3 mg/dL (.75 - .95 

mmol/L) for total serum Mg [65]. 

3. Dividing the upper limit of total serum Ca by the lower limit of 

total serum Mg yields about 5.8 (comparison of mg/dL) 

4. Dividing the lower limit of total serum calcium by the upper 

limit of total serum magnesium yields about 3.86 

5. This 3.86<Ca:Mg<5.8 is the healthy range for Ca:Mg derived 

from laboratory reference ranges in mg/dL 

6. When converted to mmoles of cations, the physiologic point of 

interaction, the optimal range is about 1.7<iCa:iMg<2.6 

These laboratory reference range derived physiologic endpoints 

correspond well to the clinically derived weight to weight intake 

endpoints of 1.7<Ca:Mg<2.6. The expected steady state physiologic 

responses by PTH and vitamin D pivot around the lines indicated by these 

endpoints (see figure 2). 

In one NHANES study of almost 10,000 followed for over 18 years the 

hazard ratio for T2DM was 1.20 when serum Mg was between 0.80 and 

0.84 mmol/L and 1.51 when it was between. 75 and .80 mmol/L [66]. 

Serum Mg level below 0.80 mmol/L increased COVID-19 mortality by 

29% and the risk of developing post-COVID syndrome by 114% [67]. 

Normo-magnesemic magnesium deficiency, first described by Mansmann 

in 1993, but now called chronic latent magnesium deficiency, i.e., serum 

Mg .75-.85 mmoles/L, is linked to migraines and premenstrual syndrome 

[68]. Other studies have underscored this same association between IR 

and marginal MgD via magnesium depletion score [69]. 
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Yet serum Mg is not available on any routine laboratory chemistry panel. 

This is partially due to the lack of a reliable indicator for the hospitalized 

patient and its tight linkage to serum calcium, which alters its efficacy. 

However, in the general public the ratio of serum calcium to serum Mg in 

mM offers a widely underappreciated biomarker of general health. An 

imbalanced Ca:Mg ratio is interlinked with the gut microbiome and many 

diseases, including cancer, dementia, CVD, autoimmune disease, and 

infectious disease. It is even linked to obesity. Western culture facilitates 

the intake of too much Ca and too little Mg. 

 

Figure 2: The area above the line Mg = (2.6) Ca is representative of those on a Western diet, while that below the line Mg = (1.7) Ca is 

representative of those on a traditional Asian diet.

C. Gut Microbiome 

Gut dysbiosis (imbalanced microbiome) compromises absorption and 

increases permeability, K/T, and Ca:Mg [70], all direct markers for 

accelerated aging. Gut dysbiosis is also tied to IR [71], and inflammaging 

[72]. But perhaps the greatest impact of MgD is on the gut microbiome. 

Two gut bacterial metabolites - secondary bile acids and indoles - are 

longevity agents [73]. However, the most heralded metabolites of 

commensal gut bacteria are SCFAs, harbingers of healthful aging [74]. 

They enhance intestinal barrier integrity, regulate metabolic homeostasis, 

are anti-inflammatory, immunoregulatory, anti-obesity, anti-diabetes, 

anticancer, neuroprotective, and cardiovascular protective [75]. 

Healthful SCFAs produced by gut microbiota include butyrate, acetate, 

and propionate. The least numerous but most beneficial of these is  

butyrate, the premiere biomarker for an optimal gut microbiome. But all 

three are linked with healthful aging and they are ligands for many Mg 

dependent GPCRs [76,77,78]. 

There are four different pathways for the synthesis of butyrate and all four 

require CoA. CoA requires Mg dependent vitamins B1,2,3,5,7 [79]. 

Propionate synthesis also involves several pathways, all of which require 

Mg dependent NAD (B3) or Mg dependent pantothenate (B5). Pyruvate 

is the substrate for acetate synthesis. This also requires CoA and the ATP-

Mg complex. So, in MgD maintenance of a healthy gut microbiome may 

be difficult and even the benefits of prebiotics and probiotics (synbiotics) 

may not be fully realized. 

Butyrate is especially noteworthy. It immuno-modulates IFN-γ (17) and 

TGF-β (transforming growth factor), which are reciprocals and 

counterbalance each other. Pleiotropic IFN-γ is loosely linked to 

autoimmune disease and dementia, while pleiotropic TGF-β favors cancer 

and fibrosis [80]. Butyrate downregulates the kynurenine pathway (host), 

thereby indirectly upregulating the indole pathway (gut microbiota) (see 

figure 1). Kynurenine pathway metabolites are ligands for the aryl 

hydrocarbon receptor that are implicated in pathophysiological processes, 

such as tumor immunotolerance [81], while those from the indole 

pathway are ligands for the AhR that improve T cell function, inhibiting 

tumor growth [82]. 

Mg dependent vitamin A and D are critical to the health of the gut 

microbiome [83]. Conversion of β carotene to its active form of vitamin 

A requires Mg dependent NAD dependent alcohol dehydrogenase and Mg 

dependent aldehyde dehydrogenase. B vitamins are also vital to the health 

of the gut microbiome [84]. B1,2,3,5,6,7,9,12, and A all require Mg for 

activation. Some intestinal bacteria can produce all eight B vitamins [85], 

and up to 65% of human gut microorganisms can synthesize at least one 

type of B vitamin [86]. Some can also produce retinoic acid (vitamin A) 

[87], but Mg is still needed for activation. All forms of vitamin D (solar 

substrate, storage form, and active form) (see figure 3) require Mg. 
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DHC=dehydrocholesterol, PTH=parathormone, VDBP=vitamin D binding protein, D3=cholecalciferol 

Figure 3: This sterol biosynthetic pathway for cholecalciferol decreases with age and is further challenged by Mg deficiency. Intensity of red arrows 

indicates the impact of Mg deficiency. 

Vitamin D deficiency has been linked to gut dysbiosis and inflammation. 

Supplementation has a favorable impact on the composition of the gut 

microbiome and the gut microbiome favorably impacts vitamin D [88]. 

Vitamin E also favorably impacts the gut microbiome [89]. Gut bacteria 

can fulfill much of the body's need for vitamin E. But to produce it they 

utilize Mg dependent S-adenosylmethionine (SAMe). Virtually all of the 

body’s methylation needs, e.g., DNA/RNA repair, protein synthesis, 

epigenome regulation, also require Mg dependent SAMe. 

V. Therapeutic Interventions 

The soil content of Mg has decreased significantly over the last 100 years 

(see figure 4). 

 

Figure 4: The average mineral content of calcium, magnesium, and iron in cabbage, lettuce, tomatoes, and spinach has dropped 80–90% between 

1914 and 2018 [90]. 
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The popularity and availability of processed foods and carbonated drinks 

have conspired to further compromise dietary Mg. Accordingly, 

supplementation is necessary. 

The first step in addressing possible disease risk is to determine K/T 

and/or Ca:Mg. Unfortunately, laboratory tests for determining K/T ratio 

are limited to research and are not otherwise commercially available. 

However, although Mg is presently not routinely offered on laboratory 

testing panels, the Ca:Mg can be easily determined from serum Ca and 

Mg. Convert their units from mg/dL to mmoles/L, i.e., multiply their ratio 

by 2.4/4.0 or 0.3. To obtain iCa:iMg, multiply by 5/7 (ionization rates). 

For the reference range limits for total serum Ca and Mg to align with the 

reference range limits for iCa and iMg, iCa must make up about 50% of 

total serum calcium, and iMg must make up about 70% of total serum 

magnesium. These limits are drawn from a sampling of the healthy 

population. The CLINICALLY determined reference range for Ca:Mg 

weight to weight is 1.7-2.6 [60]. The LAB TESTING determined 

reference range for iCa and iMg is 1.7-2.5 [63]. Presently laboratory 

reference range for serum Mg is about 1.8-2.3 mg/dL or 0.75-0.95 

mmol/L (mM). Many investigators familiar with the symptoms of MgD 

have repeatedly encouraged increasing the lower limit from 0.75 mM to 

0.85 mM [60,65,91,92,93]. 

If the lower limit of serum Mg were to be raised to 0.85 mmol/L, the 

recommended Ca:Mg range would shrink to 1.7-2.3. Fear of a possible 

Mg induced laxative effect (especially with Mg citrate) may drive 

resistance to raising this lower limit. However, slowly increasing 

supplemental intake, using multiple different forms of Mg, especially 

those chelated to an amino acid, in divided doses, can lessen this risk. 

Concomitant intake of lysine and pyridoxal phosphate (active form of 

vitamin B6) enhances absorption [94,95]. Never exceed bowel tolerance 

and always hydrate. 

Some studies demonstrate no benefit when Mg intake is combined with 

pyridoxine, an inactive form of B6 [96,97]. 

The recommended daily allowance (RDA) for Mg is 310 mg/d for females 

and 420 mg/d for males. Unfortunately, this is woefully inadequate in the 

present environment. Given a minimum target of 2.0 mg/dL for serum 

Mg, intake of elemental Mg must exceed 500 mg/day for females and 750 

mg/day for males. This assumes homeostasis with absorption of 30-40%, 

mean blood volume 65 mL/kg for females and 75 mL/kg for males, mean 

weight 78 kg for females and 91 kg for males (2018), and 40% hematocrit. 

The target weight is for elemental Mg not that for the chelated molecule, 

where Mg usually constitutes only about 10% of the total. 

Given the importance of a healthy gut microbiome to healthspan, adding 

a prebiotic and a probiotic (synbiotics) to the regimen should help address 

the symptoms of gut dysbiosis. However, gut dysbiosis will eventually 

reassert, if pursuit of a diet partial to simple carbohydrates and alcohol 

persists. Candida feeds on both. Tryptophan may help suppress transition 

of Candida from commensal to pathogen, as it suppresses hyphal 

morphogenesis. But increasing dietary intake of Mg rich foods, e.g., nuts, 

seeds, greens, should not be overlooked. 

Conclusion 

There's a growing epidemic of IR in both developed and developing 

countries. T2DM is rapidly increasing, as are T1DM and Alzheimer's 

disease (T3DM). Imbalanced K/T and Ca:Mg increase risks for cancer, 

CVD, dementia, autoimmune disease, and obesity. MgD is linked to 

imbalances in both ratios, as well as to a suboptimal gut microbiome with 

vitamin A and E deficiencies. A partial litany of direct and indirect Mg 

dependent inputs includes 

1. SCFA production by gut bacteria 

2. synthesis by gut bacteria of secondary bile acids and indoles - 

known longevity agents 

3. pancreatic beta cell function 

4. Over half the enzymes in the glycolytic pathway and Krebs 

cycle 

5. synthesis of all forms of vitamin D, including the solar substrate 

6. Activation of all the B vitamins 

7. All enzymes that require ATP 

8. All CYP 450 enzymes 

9. The vast majority of GTP dependent and independent GPCRs 

10. virtually all methylation reactions (SAMe) 

11. About 80% of known metabolic functions [89]. 

All of these are tied to accelerated aging and diminished healthspan. The 

linkages in this narrative review are largely associative. Cause and effect 

is not rigorously demonstrated. Fortunately, recognition of the connection 

between IR and hormones that accelerate aging and compromise 

healthspan is slowly emerging. Awareness of the MgD-aging connection 

is slowly increasing [8]. 
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