

The Brain, Quantum Mechanics, and How Light Converts into Serotonin

Paul T E Cusack

Associate Professor, Department of Mathematics, University of New Brunswick, Fredericton, NB Canada.

***Corresponding Author:** Paul T E Cusack. Associate Professor, Department of Mathematics, University of New Brunswick, Fredericton, NB Canada.

Received Date: 09 September 2024 | **Accepted Date:** 21 October 2025 | **Published Date:** 30 October 2024

Citation: Paul T E Cusack, (2024), The Brain, Quantum Mechanics, and How Light Converts into Serotonin, *J. Brain and Neurological Disorders*, 7(4): DOI:10.31579/2642-973X/110

Copyright: © 2024, Paul T E Cusack. This is an open-access article distributed under the terms of The Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

While doing research on electrodynamics, I was able to determine that light results when the universe is squeezed. The physics extends to the production of serotonin in the human eye as is shown below:

Serotonin $C_6H_{12}N_2O = 1762 \times 6.022 = 10610$

$t = eM = e^{0.10610} = 1.11193 = 1/2.998^2 = 1/c^2 = M$

$t = M$

$KE = PE$ Conservation of energy $t = 3$

$t^2 - t - 1 = 2t - 1$

$y = y'$

Baryon $= \Sigma = -1/3 = 1/t = E = 1/M = c^2$

$V = iR$

$1/c^2 = 35R$

$R = 31788 \sim 1/\pi$ freq of human mind.

A Baryon is an elementary particle. It is actually the negative sigma particle that is where light gets its power. The function of the human mind is the Golden Mean Parabola (GMP).

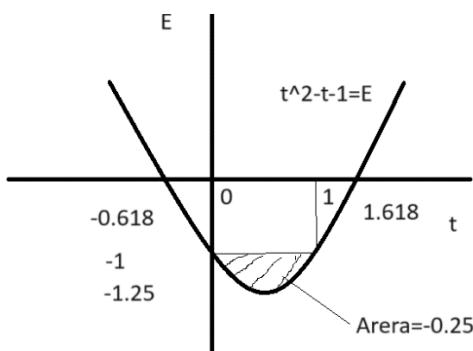
$t^2 - t - 1 = E$

This is the probabilistic wave function (ie Quantum Mechanics).

$Freq = t = \pi$

$E = 1/t = 1/\pi$

$(\pi)^2 - \pi - 10 = 57.29 \text{ degrees} = 1 \text{ radian} = E = 1 + \text{Positive sigma} = 1 - M$


$M = 1.118943$

$E = 1 - t$

$1/t = 1 - t$

$1 = t - t^2$

$t^2 - t - 1 = 0$ function of the human mind.

$$\Sigma^0 = 7.4 \pm 0.7 \times 10^{-20} = t = \text{half life}$$

$$1/7.4 = 1351 = \text{Mass of human brain}$$

$$t^2 - t - 1 = \ln t$$

Derivative

$$2t - 1 = 1/t$$

$$t^2 - t - 1/2 = 0$$

$$t = 1.25; -0.25$$

$$t = E; t = Et$$

$$tE = Et$$

$$t(1.25) = -0.25$$

$$t = -0.2$$

$$M = \ln t = \ln(-0.2) = 0.618 \ln 0.2 - 0.9946 \approx -1 = E \text{ at } t = 0 \Rightarrow GMP \text{ & } Et = -0.25 \text{ This is when consciousness begins.}$$

Color	Frequency	Wavelength
violet	668–789 THz	380–450 nm
blue	606–668 THz	450–495 nm
green	526–606 THz	495–570 nm
yellow	508–526 THz	570–590 nm
orange	484–508 THz	590–620 nm
red	400–484 THz	620–750 nm

Blue Light=Blue Sky

$$606-668=1062 \sim 1.601 = \text{serotonin}$$

$$E = h\nu = ht = h\nu_{\text{freq}} = 6.625(1062) = 7.03$$

$$EM = 7.03(4) = 281$$

$$E^2 = 281$$

$$E = \sqrt{281} = 35.5 \text{ Amps}$$

Violet Blue ringed by Cyan-Green light

$$700-580=12.011 \text{ Carbon}$$

$$E = h\nu = 6.626(120.11) = 7958 = 1/125.66 = 1/E = 1/(4\pi)$$

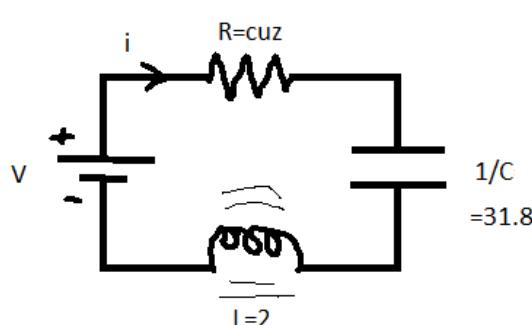
$$t = 4\pi$$

$$t = Mt$$

$$M = 1 = \ln t = e^1$$

$$2 \text{C}_6\text{H}_{12}\text{N}_2\text{O} + 17 \text{O}_2 = 12 \text{CO}_2 + 12 \text{H}_2\text{O} + 2 \text{N}_2$$

Serotonin \rightarrow


$$M = 80034 = 1/1.25 = t$$

$$M = t$$

$$\text{C}_6\text{H}_{12}\text{N}_2\text{O} + 3 \text{O}_2 = \text{C}_6\text{H}_{12}\text{O}_6 + \text{N}_2\text{O}$$

Serotonin \rightarrow Glucose

$$32(3) + 99.994 = 224 \times 6.022 = 1350 = M \text{ of the human brain}$$

$$R=0.4233$$

$$C=1/\pi=0.318$$

$$L=2$$

$$R_{\text{total}}=0.4233+0.318-2=-1.25=E$$

$$V^+=iR$$

$$=(35 \text{ mA}) (-1.25) = -44.05 = 1/2.26$$

$$E=hv$$

$$1/2.26=6.626t$$

$$t=2.265-1/V^+=1/E=t$$

References

1. Schwartz, M. (1971). Principles of Electrodynamics. NY: dover.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

[Submit Manuscript](#)

DOI:[10.31579/2642-973X/110](https://doi.org/10.31579/2642-973X/110)

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <https://auctoresonline.org/journals/brain-and-neurological-disorders>