

Boolean Algebra (Mathematical Logic) for Differential Diagnosis of Psychiatric Disorders

Gerhard Zugmaier

Department of Haematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany.

***Corresponding Author:** Gerhard Zugmaier, Department of Haematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany.

Received date: December 05, 2025; **Accepted date:** December 11, 2025; **Published date:** December 18, 2025

Citation: Gerhard Zugmaier, (2025), Boolean Algebra (Mathematical Logic) for Differential Diagnosis of Psychiatric Disorders, *J Clinical Research and Reports*, 22(1); DOI:10.31579/2690-1919/603

Copyright: © 2025, Gerhard Zugmaier. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The endemic zoonotic disease fascioliasis is very common in eastern Uttar Pradesh. The essential oils play an important role in controlling snail population. Current research shows that essential oils from various *Mentha piperata* and *Mentha spicata* plant materials are effective as phytomolluscicides against the snail vector *Lymnaea acuminata*. Essential oils from various plant materials of *Mentha piperata* and *Mentha spicata* are extracted by traditional and non-traditional methods such as solvent extraction (SE) and hydrodistillation (HD). From the results section, it is clear that *Mentha piperata* and *Mentha spicata* essential oil have strong molluscicidal activity (24-h LC50 values are 4.01 and 4.50 respectively, especially against the snail vector *Lymnaea acuminata*). The results of this study clearly showed that essential oils cause great harm when applied to snail carriers. The aim of this study is to establish the molluscicidal effect of essential oils of different plant materials of *Lantana indica* against the snail vector *Lymnaea acuminata*.

Kew Words: solvent extraction; hydrodistillation; phytomolluscicides

Introduction

Psychiatric diagnosis depends on structured criteria that can be ambiguous or overlapping⁵. Boolean algebra replaces ambiguous prose with variables and mathematical operators—AND (\wedge), OR (\vee), NOT (\neg), IMPLIES (\Rightarrow), and DEFINED-AS ($:=$)—yielding truth-functional rules that are auditable and implementable in clinical decision support¹⁻⁴. Mathematical logic (Boolean algebra) has long been proposed to clarify diagnostic reasoning in psychiatry, linking structured criteria to computational decision support. [5-9] By making necessary and sufficient conditions explicit and encoding exclusions directly, Boolean algebra enables reproducible, interpretable diagnostic reasoning. This manuscript adapts those principles to common psychiatric syndromes while preserving clinician interpretability (see Table 1 for variable definitions and Table 2 for diagnostic schemata). Objective of this article is to

demonstrate the usefulness of Boolean algebra for differential diagnosis by a few selected examples.

Materials and Methods

We represent each diagnostic element (symptom, duration, exclusion, impairment) as a binary variable that can be True (1) or False (0). Diagnostic rules are formalized as Boolean expressions. Unless otherwise stated, conjunction (AND, \wedge) is the default operator for combining required conditions. Duration thresholds and course specifiers are encoded as explicit variables. Exclusion criteria are encoded via negation (NOT, \neg). Where diagnostic hierarchy is required, implication (\Rightarrow) suppresses subordinate diagnoses. Variable definitions appear in Table 1, diagnostic schemata in Table 2, and a worked example of mathematical evaluation appears in Appendix B.

Variable	Meaning	Clinical Example / Threshold
D _{mood}	Depressive mood and symptom cluster	≥ 5 depressive symptoms in the same 2-week period with depressed mood or anhedonia
B \uparrow	Elevated or irritable mood (mania)	≥ 1 week of manic symptoms (or any duration if hospitalized)
H	History of hypomania	≥ 4 days of elevated/irritable mood with ≥ 3 hypomanic symptoms
S _{schiz} CZ	Schizophrenia core symptoms	Hallucinations, delusions, or disorganized speech (Criterion A) ≥ 1 month
M _{mood} -dominant	Mood-dominant course	Mood episodes occupy majority of illness duration
E _{sub} & _{st}	Substance/medical exclusion	Symptoms better explained by substance or another medical condition
I	Impairment or distress	Clinically significant distress or functional impairment

Legend (Table 1): Binary variables take values 1 = True and 0 = False. Unless explicitly noted, diagnostic criteria are combined using the AND (\wedge) operator

Table 1: Core Boolean Variables for Psychiatric Diagnosis¹⁴

Diagnosis	Boolean Definition (:=)
Major Depressive Disorder (MDD)	$MDD := D_{mood} \wedge T_{2w} \wedge I \wedge \neg B \uparrow \wedge \neg E_{su} \mathcal{B}_{st}$
Bipolar I Disorder (BD-I)	$BD-I := B \uparrow \wedge I \wedge \neg E_{su} \mathcal{B}_{st}$
Obsessive-Compulsive Disorder (OCD)	$OCD := (O \vee C) \wedge T_{1h/day} \wedge I \wedge \neg E_{su} \mathcal{B}_{st}$
Post-Traumatic Stress Disorder (PTSD)	$PTSD := E \wedge B \wedge A \wedge N \wedge D \wedge T > 1m \wedge I \wedge \neg E_{su} \mathcal{B}_{st}$

Table 2: Diagnostic Schemata as Boolean Expressions

Legend (Table 2): Operators— \wedge = AND (all listed conditions must be true); \vee = OR (at least one true); \neg = NOT (exclusion); $:=$ = defined as. See Appendix A for full symbol glossary.

Symbol	Name	Mathematical Definition	Clinical Interpretation
\wedge	AND	1 if both operands are true	All criteria must be met simultaneously
\vee	OR	1 if at least one operand is true	Any one of several alternative criteria may be met
\neg	NOT (negation)	1 if operand is false	Explicit exclusion (e.g., not substance-induced)
\Rightarrow	Implies	If first statement has the value 1, second must also be 1	Hierarchical dependency
$:=$	Defined as	Left term is defined by right expression	Mathematical definition of diagnosis

Appendix A: Glossary of Mathematical Symbols

D_{mood}	$B \uparrow$	H	$E_{su} \mathcal{B}_{st}$	I	Diagnosis Output
1	0	0	0	1	Major Depressive Disorder (MDD)
1	0	1	0	1	Bipolar II Disorder (BD-II)
0	1	any	0	1	Bipolar I Disorder (BD-I)
any	any	any	1	any	No Diagnosis (Excluded Because of Substance Effect)

Appendix B: Truth-Table Example

Legend (Appendix B):

1 = True (criterion present); 0 = False (criterion absent); any = either (True or False). Operator used: AND (\wedge) across each row. All conditions must be true simultaneously for the diagnosis to evaluate True; exclusions apply via NOT (\neg).

Discussion

Encoding psychiatric diagnostic criteria with Boolean algebra yields transparent, auditable rules (see Table 2 and Appendix B). Conjunction (AND) clarifies necessary co-occurrence of key features; negation (NOT) enforces exclusions; disjunction (OR) models alternatives; implication expresses hierarchy when needed. These findings align with computational psychiatry models emphasizing formal reasoning, causality, and transparency in clinical systems. [10-14] This formalization supports decision support, inter-rater consistency, and validation against gold-standard interviews. Limitations include measurement error, threshold artifacts, and comorbidity requiring hierarchical post-processing. Future work may integrate probabilistic models while retaining Boolean interpretability.

Conclusion: A few examples have demonstrated that Boolean algebra may be useful as additional tool for differential diagnosis of psychiatric disorders.

References

- Zugmaier G, Locatelli F. (2019). Application of mathematical logic for immunophenotyping of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). *Biomed Genet Genom.*;4:1-3.
- Zugmaier G, Locatelli F. (2021). Application of mathematical logic for cytogenetic definition and risk stratification of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). *Med Res Arch.*;9(2):1-8.
- Zugmaier G, Locatelli F. (2021). Application of Boolean algebra (mathematical logic) for definition of acute leukemias. *J Community Med Public Health Rep.*;2(8):1-5.
- Zugmaier G, Locatelli F. (2024). Boolean algebra (mathematical logic) for grading of toxicities associated with cellular immune therapy. *Med Res Arch.*;12(10).
- McHugh PR, Slavney PR. (1998). *The Perspectives of Psychiatry*. Baltimore: Johns Hopkins University Press
- Insel TR. (2014). The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. *Am J Psychiatry*. Apr;171(4):395-397.
- de Oliveira GS, Rodrigues FHDS, Pontes JGM, Tasic L. (2025). Artificial Intelligence-Based Methods and Omics for Mental Illness Diagnosis: A Review. *Bioengineering (Basel)*. Sep 27;12(10):1039.
- Petzschnig FH, Weber LAE, Gard T, Stephan KE. (2017). Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis. *Biol Psychiatry*. Sep 15;82(6):421-430.
- Zugmaier G, Kerkmann S, Locatelli F. (2023). Application of Boolean Algebra for Definition of Myeloid Neoplasms. *Med Res Arch.*;11(1).
- Ahn WY, Busemeyer JR. (2016). Challenges and promises for translating computational tools into clinical practice. *Curr Opin Behav Sci*. Oct 1;11:1-7.
- Friston KJ, Redish AD, Gordon JA. Computational Nosology and Precision Psychiatry. *Comput Psychiatry*. 2017;1(1):2-23.
- Zugmaier G, Locatelli F. (2025). Boolean Algebra (Mathematical Logic) for Computational Differential Diagnosis in Medicine. *J Clin Res Rep.*;18(1).
- Scheffer M, Bockting CL, Borsboom D, Cools R, Delecroix C, et al. (2024). B. A Dynamical Systems View of Psychiatric Disorders-Theory: A Review. *JAMA Psychiatry*. Jun 1;81(6):618-62338568615.
- Pearl J, Mackenzie D. (2018). *The Book of Why: The New Science of Cause and Effect*. New York: Basic Books; .Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition DSM-5

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: [Submit Manuscript](#)

DOI:[10.31579/2690-1919/603](https://doi.org/10.31579/2690-1919/603)

Ready to submit your research? Choose Auctores and benefit from:

- fast; convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate; unrestricted online access

At Auctores; research is always in progress.

Learn more <https://www.auctoresonline.org/journals/journal-of-clinical-research-and-reports>