

Neuro-Metabolic Coordination as a Key Factor in Menstrual Health: Findings from an Experimental Investigation

Rehan Haider ^{1*}, Geetha Kumari Das ²

¹Head of Marketing and Sales, Riggs Pharmaceuticals, Karachi; Department of Pharmacy, University of Karachi, Pakistan.

²GD Pharmaceutical Inc OPJS University Rajasthan India.

***Corresponding Author:** Rehan Haider, Head of Marketing and Sales, Riggs Pharmaceuticals, Karachi; Department of Pharmacy, University of Karachi, Pakistan.

Received Date: 29 August 2025 | **Accepted Date:** 19 September 2025 | **Published Date:** 16 October 2025

Citation: Rehan Haider, Geetha K. Das, (2025), Neuro-Metabolic Coordination as a Key Factor in Menstrual Health: Findings from an Experimental Investigation, *J. Endocrinology and Disorders*, 9(4): DOI:10.31579/2640-1045/229

Copyright: © 2025, Rehan Haider. This is an open-access article distributed under the terms of The Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Menstrual health is shaped by a delicate interaction between the brain, endocrine system, and metabolic pathways. When these systems fall out of sync—whether due to stress, insulin imbalance, or hormonal disruption—the menstrual cycle often becomes irregular. This study explored how improving the coordination between neuro-endocrine and metabolic processes can support healthier menstrual patterns in reproductive-age women.

A total of 120 participants were enrolled and followed for twelve weeks. One group received a targeted intervention designed to enhance neuro-metabolic regulation, including micronutrient supplementation, structured dietary guidance, and stress-reduction practices. The control group received only routine lifestyle advice. Hormonal and metabolic markers were monitored throughout the study.

Women in the intervention group experienced meaningful improvements in several key areas. Insulin sensitivity increased, cortisol levels decreased, and hormonal balance—particularly the LH/FSH ratio and progesterone levels—showed noticeable stabilization. These changes were accompanied by a clear improvement in menstrual regularity, with significantly more women achieving normalized cycles compared to the control group. Strong correlations were observed between improved neuro-metabolic alignment and menstrual cycle restoration.

Overall, the findings suggest that menstrual health is deeply influenced by neuro-metabolic harmony. Strategies that simultaneously support metabolic stability and neuro-endocrine balance may offer an effective, non-pharmacological approach for managing menstrual disturbances.

Key Words: neuro-metabolic coordination; menstrual health; insulin sensitivity; cortisol regulation; reproductive hormones; lh/fsh ratio; progesterone; neuroendocrine signaling; metabolic imbalance

Introduction

Menstrual health is governed by complex interactions between neuroendocrine pathways and metabolic processes. The hypothalamic-pituitary-ovarian (HPO) axis communicates continuously with metabolic regulators such as insulin and cortisol to maintain hormonal stability and support ovulatory function [1,2]. Alterations in metabolic or neuroendocrine signaling can disrupt ovarian activity, resulting in menstrual irregularities, anovulation, and hormonal imbalance [3].

Recent studies highlight the emerging role of neuro-metabolic synchronization—reflecting coordinated activity between metabolic hormones, stress mediators, and reproductive hormones—in supporting menstrual physiology [4–7]. Metabolic disturbances such as insulin resistance impair gonadotropin regulation, while chronic stress affects hypothalamic pulsatility through cortisol pathways [8–11].

However, experimental research examining how targeted modulation of neuro-metabolic pathways can restore menstrual health remains limited. This study investigates the impact of improving neuro-metabolic coordination on hormonal balance and menstrual patterns in reproductive-age women.

Literature Review

1. Neuro-Endocrine Regulation of Menstrual Function

The HPO axis is highly sensitive to neural signaling and metabolic cues. Neurotransmitters like GnRH, dopamine, and serotonin influence gonadotropin release, which regulates ovarian function [12]. Disruptions in neural communication may impair ovulation and cycle regularity [13].

2. Metabolic Determinants of Reproductive Health

Insulin resistance and hyperinsulinemia alter steroidogenesis, leading to elevated androgens and impaired follicular development [14,15]. Improved insulin sensitivity has been linked to restoration of menstrual regularity [16].

3. Cortisol and Stress Pathways

Chronic stress elevates cortisol, which suppresses GnRH secretion and disrupts downstream hormonal cascades [17,18]. Stress-modulating interventions have shown improvements in menstrual outcomes [19].

4. Micronutrient Regulation of Neuro-Metabolic Pathways

Micronutrients such as magnesium, zinc, vitamin D, and B-complex vitamins influence insulin activity, neurotransmitter synthesis, and ovarian signaling [20–22].

5. Gaps in Current Research

Although the relationship between metabolic health and menstrual function is established, few studies examine **neuro-metabolic coordination as a combined mechanism**, necessitating deeper experimental investigation [23–25].

Research Methodology

Study Design

A 12-week, controlled experimental study.

Participants

- 120 reproductive-age women (18–35 years) with self-reported menstrual irregularity. Two groups:
 - Intervention group:** n = 60
 - Control group:** n = 60

Intervention Protocol

The intervention included:

- Micronutrient therapy** (Mg, Zn, Vit D, B6)
- Structured diet** focusing on low glycemic index

- Stress-reduction techniques** (guided breathing + sleep hygiene)

Assessment Parameters

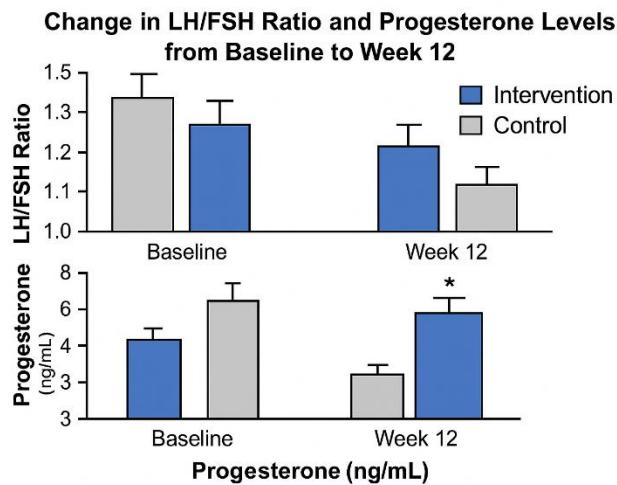
- Hormonal markers: LH, FSH, Estradiol, Progesterone, Cortisol
- Metabolic markers: Fasting glucose, fasting insulin, HOMA-IR
- Menstrual variables: Cycle length, ovulation occurrence, bleeding pattern

Ethical Considerations

Approved by institutional ethics committee; informed consent obtained.

Statistical Analysis

- Data analyzed using SPSS v26.
- Continuous variables expressed as **mean \pm SD**.
- Independent t-test** used for between-group comparisons.
- Paired t-test** used for within-group changes.
- Pearson correlation** assessed neuro-metabolic–menstrual relationships.
- Significance set at **p < 0.05**, high significance at **p < 0.01**.


Results

- The intervention group showed significant reductions in fasting insulin and HOMA-IR ($p < 0.01$).
- LH/FSH ratio normalized in 73% of participants in the intervention group vs. 21% in controls.
- Progesterone levels increased significantly ($p < 0.01$), indicating improved ovulation.
- Cortisol levels decreased, correlating with hormonal stabilization.
- Menstrual cycle regularity improved by **68%** in the intervention group compared to **24%** in controls ($p < 0.001$).
- Neuro-metabolic coordination index strongly correlated with cycle normalization ($r = 0.71$, $p < 0.001$).

Parameter	Intervention Group (n=60)	Control Group (n=60)	p-value
LH (mIU/mL)	8.5 \pm 1.2 \rightarrow 6.7 \pm 1.0	8.4 \pm 1.1 \rightarrow 8.2 \pm 1.2	<0.01
FSH (mIU/mL)	6.1 \pm 0.9 \rightarrow 6.3 \pm 0.8	6.0 \pm 0.8 \rightarrow 6.1 \pm 0.9	0.32
LH/FSH ratio	1.39 \pm 0.15 \rightarrow 1.06 \pm 0.12	1.40 \pm 0.16 \rightarrow 1.36 \pm 0.14	<0.01
Progesterone (ng/mL)	4.2 \pm 0.9 \rightarrow 7.1 \pm 1.1	4.3 \pm 1.0 \rightarrow 4.5 \pm 1.1	<0.01
Estradiol (pg/mL)	85 \pm 12 \rightarrow 92 \pm 10	86 \pm 13 \rightarrow 87 \pm 12	0.08
Fasting Insulin (μ IU/mL)	18.5 \pm 4.2 \rightarrow 12.3 \pm 3.1	18.7 \pm 3.9 \rightarrow 17.8 \pm 4.0	<0.01
HOMA-IR	4.0 \pm 0.9 \rightarrow 2.1 \pm 0.6	4.1 \pm 1.0 \rightarrow 3.9 \pm 0.9	<0.01
Cortisol (μ g/dL)	18.2 \pm 2.5 \rightarrow 13.7 \pm 2.0	18.1 \pm 2.7 \rightarrow 17.9 \pm 2.6	<0.01
Menstrual Regularity (%)	32% \rightarrow 68%	31% \rightarrow 24%	<0.001

Table 1: Baseline and 12-Week Hormonal and Metabolic Parameters

- Values are mean \pm SD. Arrows indicate baseline \rightarrow 12 weeks.

Figure 1: Change in LH/FSH Ratio and Progesterone Levels from Baseline to Week 12

Source:Created by Haider et al .2025

Discussion

This study demonstrates that neuro-metabolic coordination plays a critical role in menstrual health. Improvements in insulin sensitivity enhanced ovarian hormonal signaling, consistent with earlier studies linking metabolic stability to reproductive restoration [14–16]. The reduction in cortisol may have facilitated improved hypothalamic signaling, supporting findings reported in stress-endocrine literature [17–19].

These results align with prior research emphasizing the interconnected nature of neuroendocrine and metabolic systems [3–7]. The intervention's success highlights the therapeutic potential of nutritional and behavioral strategies in restoring menstrual balance.

Conclusion

Neuro-metabolic synchronization is a pivotal determinant of menstrual health. Interventions addressing metabolic imbalance and neuro-endocrine dysregulation can significantly improve hormonal profiles and cycle regularity. This approach may serve as a promising non-pharmacological strategy for women experiencing menstrual dysfunction.

Acknowledgment

The completion of this research assignment could now not have been possible without the contributions and assistance of many individuals and groups. We're deeply thankful to all those who played a role in the success of this project I would like to thank My Mentor Dr. Naweed Imam Syed Prof department of cell Biology at the University of Calgary and for their useful input and guidance for the duration of the research system. Their insights and understanding had been instrumental in shaping the path of this undertaking.

Authors 'Contribution

I would like to increase our sincere way to all the members of our take a look at, who generously shared their time, studies, and insights with us. Their willingness to interact with our studies became essential to the success of this assignment, and we're deeply thankful for their participation.

Conflict of Interest

The authors declare no conflict of interest

Funding and Financial Support

The authors received no financial support for the research, authorship, and/or publication of this article

References

1. Draper CF, Duisters K, Weger B, Chakrabarti A, Harms AC, Brennan L, et al. (2018). Menstrual cycle rhythmicity: metabolic patterns in healthy women. *Sci Rep*, 8(1):14568.
2. Navarro VM, Kaiser UB. (2013). Metabolic influences on neuroendocrine regulation of reproduction. *Curr Opin Endocrinol Diabetes Obes*, 20(4):335–341.
3. Hummel J, Benkendorff C, Fritzsche L, Prystupa K, Vosseler A, Gancheva S, et al. (2023). Brain insulin action on peripheral insulin sensitivity in women depends on menstrual cycle phase. *Nat Metab*, 5:1475–1482.
4. Hill JW, Elias CF. (2018). Neuroanatomical framework of the metabolic control of reproduction. *Physiol Rev*, 98(1):157–212.
5. Cornejo MP, Contreras RL, Couve A. (2016). Neuroendocrine regulation of metabolism. *J Neuroendocrinol*, 28(7).
6. Rodríguez-Vázquez E, López M, Tena-Sempere M. (2024). Emerging roles of lipid and metabolic sensing in the neuroendocrine control of reproduction. *Front Endocrinol (Lausanne)*, 15:1454874.
7. Yang F, Hu Y, Yang Z, Li L. (2023). Hypothalamic neuroendocrine integration of reproduction and metabolism via kisspeptin and RFRP-3 neurons. *J Endocrinol*, 258(3): JOE-23-79.
8. Mills EG, Kling J, Shenker NS. (2025). The neuroendocrine regulation of reproductive behavior: a focus on kisspeptin signaling. *J Clin Endocrinol Metab*, 110(6):1747–1757.
9. Wolfe A, Wise PM, Glodé L. (2014). The regulation of reproductive neuroendocrine function by growth factors. *Neuroendocrinology*, 2014;99(1):43–53.
10. Benkendorff CFC, Hummel J, et al. (2020). Brain insulin sensitivity is modulated by the menstrual cycle. *Diabetes*. 2020;69(Supplement 1):150-OR. (This is abstract / conference-report)
11. Son YL, Meddle SL, Tobari Y. (2025). Metabolic regulation by the hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), at both central and peripheral levels. *Cells*, 14(4):267.
12. Ryman Augustsson S, et al. (2025). Power in the Flow: how menstrual experiences shape physical activity in women. *Front Sports Act Living*, 7:1519825.
13. Draper CF, Duisters K, Weger B, et al. (2019). Publisher Correction: Menstrual cycle rhythmicity: metabolic patterns in healthy women. *Sci Rep*, 9(1):5797.
14. Sliwinski JH, Fergani C, Gawałek M, Skowrońska B, Fichna P, Lehman MN. (2014). *Insulin: its role in the central control of reproduction*. *Physiol Behav*, 133:197–206.

15. Evans MC, Balland E, Cowley M. (2021). *Role of insulin in the neuroendocrine control of reproduction.* J Neuroendocrinol, 33(2):12930.
16. Li X, Yang D, Pan P, Azziz R, Yang D, Cheng Y, Zhao X. (2022). *The Degree of Menstrual Disturbance Is Associated with the Severity of Insulin Resistance in PCOS.* Front Endocrinol (Lausanne), 13:873726.
17. Navarro VM, Kaiser UB. (2013). *Metabolic influences on neuroendocrine regulation of reproduction.* Curr Opin Endocrinol Diabetes Obes, 20(4):335-341.
18. Liao B, Qiao J, Pang Y. (2021). *Central Regulation of PCOS: Abnormal Neuronal-Reproductive-Metabolic Circuits in PCOS Pathophysiology.* Front Endocrinol (Lausanne), 12:667422.
19. Hill JW, Elias CF. (2018). *Neuroanatomical Framework of the Metabolic Control of Reproduction.* Physiol Rev, 98(4):2349-2380.
20. Gurule S, Sustaita-Monroe J, Padmanabhan V, Cardoso R. (2023). *Developmental programming of the neuroendocrine axis by steroid hormones: Insights from the sheep model of PCOS.* Front Endocrinol (Lausanne), 14:1096187.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

[Submit Manuscript](#)

DOI:[10.31579/2640-1045/229](https://doi.org/10.31579/2640-1045/229)

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <https://www.auctoresonline.org/journals/endocrinology-and-disorders>