

Cervical Cancer at A Crossroads: From Preventable Tragedy to Precision Triumph.

Chinmyee Saha *

Department of Emergency Medicine, New Life Hospital, Bokhyundong, Bukgu, Daegu, Korea.

***Corresponding Author:** Chinmyee Saha, Department of Emergency Medicine, New Life Hospital, Bokhyundong, Bukgu, Daegu, Korea.

Received Date: September 05, 2025; **Accepted Date:** September 15, 2025; **Published Date:** September 26, 2025

Citation: Chinmyee Saha, (2025), Cervical Cancer at A Crossroads: From Preventable Tragedy to Precision Triumph, *J. Biomedical Research and Clinical Reviews*, 11(2); DOI:10.31579/2692-9406/231.

Copyright: © 2025, Chinmyee Saha. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Cervical cancer remains a significant health burden, especially in low- and middle-income countries, despite advancements in prevention. This review synthesizes recent progress in epidemiology, molecular pathogenesis, diagnostics, and therapeutics. Persistent infection with high-risk human papillomavirus (HPV)—notably types 16 and 18—is the primary cause, promoting carcinogenesis via E6 and E7-mediated tumor suppressor inactivation. Diagnostic tools such as HPV DNA testing and cytological screening have improved early detection, while HPV vaccines continue to reduce incidence rates. Standard treatments include surgery and chemoradiotherapy, though immunotherapy, targeted therapies, and therapeutic vaccines are reshaping management approaches. The article highlights challenges in low-resource settings and explores digital innovations that enhance screening reach and equity. Through literature integration and critical insight, the review provides a framework for precision public health and outlines future directions toward eliminating cervical cancer as a global threat.

Key words: cervical cancer; HPV; pathogenesis; screening; immunotherapy; vaccines

Introduction

Cervical cancer represents a significant global health concern, ranked as the fourth most frequent malignancy among women, particularly affecting those in low- and middle-income countries (LMICs) [1]. It arises primarily due to persistent infection by high-risk types of human papillomavirus (HPV), especially HPV-16 and HPV-18, which initiate oncogenic transformation through viral oncoproteins E6 and E7 [2]. Despite the development of effective screening programs and prophylactic vaccines, cervical cancer continues to exert a heavy socio-economic burden, particularly in regions with limited healthcare infrastructure.

Recent advances in cancer biology have elucidated critical molecular mechanisms underpinning cervical carcinogenesis. This has led to the emergence of targeted therapies, novel immunomodulators, and biomarker-based screening tools, which collectively hold promise for improving patient outcomes [3]. The global health community has responded with initiatives like the World Health Organization's 90-70-90 campaign to eliminate cervical cancer as a public health issue [4].

This review synthesizes current understanding and recent developments in cervical cancer research, covering epidemiology, etiopathogenesis, diagnostic strategies, therapeutic modalities, and public health measures. It

provides a reliable commentary and independent insight based on a thorough analysis of the literature, offering new conceptual frameworks for interpreting disease progression and management.

Epidemiology And Global Burden

According to GLOBOCAN 2020, cervical cancer accounted for 604,127 new cases and 341,831 deaths globally, with over 85% of these occurring in LMICs [5]. The disease disproportionately affects younger women aged 30 to 49 years, impacting workforce productivity and familial structures [6]. HPV prevalence varies geographically due to differences in sexual behavior, screening coverage, and vaccination uptake [7].

Sub-Saharan Africa, South Asia, and parts of Latin America have the highest age-standardized incidence and mortality rates [8]. Immunocompromised individuals, especially those co-infected with HIV, exhibit accelerated progression from cervical intraepithelial neoplasia (CIN) to invasive carcinoma [9].

Barriers such as inadequate infrastructure, cultural stigma, and lack of awareness compound the disease burden. Population-based registries and

mobile health technologies are now being used to augment surveillance and improve accessibility to screening services [10].

Etiology And Risk Factors

Persistent infection with oncogenic HPV genotypes is the necessary cause of cervical cancer [11]. HPV-16 and HPV-18 contribute to approximately 70% of cases, with other types like HPV-31 and HPV-45 having minor associations [12]. Transmission occurs via sexual contact, and risk factors include early sexual debut, multiple sexual partners, high parity, and smoking [13].

Other contributing factors include prolonged oral contraceptive use, poor genital hygiene, malnutrition, and genetic susceptibility such as polymorphisms in the p53 gene [14]. Social determinants — like limited education and income — also influence risk by affecting healthcare-seeking behavior [15].

HPV Biology and Carcinogenesis

HPV infects basal epithelial cells through microabrasions, establishing a productive infection that may become persistent. High-risk HPV types encode E6 and E7 oncoproteins which inactivate tumor suppressors p53 and Rb, respectively [16]. This leads to dysregulation of the cell cycle, inhibition of apoptosis, and genomic instability.

Integration of HPV DNA into host genome is a hallmark of malignant progression. Epigenetic alterations, including DNA methylation and histone modification, play critical roles in silencing viral suppressors and activating oncogenes [17]. The host immune system fails to clear persistent infection due to local immunosuppression and evasion mechanisms [18].

Pathogenesis And Tumor Progression

Cervical carcinogenesis is a multistep process: normal epithelium → HPV infection → CIN1 (low grade) → CIN2/3 (high grade) → invasive carcinoma [19]. The duration from infection to cancer can span years, offering a window for intervention. Molecular signatures of progression include upregulation of telomerase activity, angiogenesis, and altered expression of MMPs and VEGF [20].

Studies have shown that inflammation and oxidative stress further contribute to DNA damage and neoplastic transformation [21]. Cancer stem cells and epithelial-mesenchymal transition (EMT) pathways have also been implicated in metastasis and therapeutic resistance [22].

Histopathology And Clinical Staging

The two main histological subtypes are squamous cell carcinoma (~70%) and adenocarcinoma (~25%) [23]. Rare variants include adenosquamous, small-cell, and neuroendocrine carcinomas. The FIGO (International Federation of Gynecology and Obstetrics) staging system was revised in 2018 to include imaging and pathology data [24].

Early-stage disease is often asymptomatic, but advanced cases present with abnormal bleeding, pelvic pain, and urinary symptoms. Biopsies remain critical for definitive diagnosis, with immunohistochemical staining for p16 and Ki-67 used to differentiate precancerous lesions [25].

Screening Modalities and Prevention Strategies

Early detection of cervical precancerous lesions has drastically reduced disease incidence in high-resource countries. The Pap smear, introduced by Dr. George Papanicolaou in the 1940s, remains a cornerstone of cytological screening [26]. More recently, HPV DNA testing has demonstrated superior

sensitivity for high-grade CIN lesions and is increasingly used in co-testing protocols [27]. Visual Inspection with Acetic Acid (VIA) offers a low-cost alternative, suitable for LMICs. Innovations such as self-sampling kits and digital cervicography are improving accessibility and accuracy [28].

The most impactful preventive strategy is HPV vaccination. Three vaccines — bivalent (Cervarix), quadrivalent (Gardasil), and nonavalent (Gardasil-9) — target oncogenic HPV strains and have shown up to 90% efficacy in preventing CIN2/3 and adenocarcinoma precursors [29]. The WHO recommends vaccination for girls aged 9–14, ideally before sexual debut. Evidence from Australia, Sweden, and Rwanda indicates substantial population-level reduction in HPV prevalence and cervical abnormalities following national vaccination programs [30].

Current Therapeutic Approaches

Treatment depends on disease stage, histology, and fertility considerations. Stage I tumors are typically managed surgically via radical hysterectomy or trachelectomy (in fertility-preserving cases) [31]. Locally advanced stages (II–III) require concurrent chemoradiotherapy, usually cisplatin-based regimens [32].

Radiation therapy, comprising external beam radiation and brachytherapy, remains central to cervical cancer management. Advances in 3D-conformal and intensity-modulated radiotherapy (IMRT) have improved targeting and minimized toxicities [33].

For advanced and recurrent cases, palliative chemotherapy (e.g., paclitaxel, carboplatin) may be administered. However, therapeutic options remain limited, with modest survival benefit [34].

Emerging And Targeted Therapies

Research into targeted molecular agents is reshaping cervical cancer treatment paradigms. The VEGF inhibitor bevacizumab, approved in 2014, demonstrated improved overall survival when added to chemotherapy in metastatic disease [35]. Other promising agents include PARP inhibitors, EGFR antagonists, and checkpoint inhibitors.

Immunotherapy, particularly anti-PD-1 monoclonal antibodies such as pembrolizumab, has shown efficacy in PD-L1 positive tumors [36]. Adoptive T-cell therapy and therapeutic HPV vaccines are under active investigation, aiming to exploit tumor-specific antigens and restore host immune surveillance [37].

Genomic profiling and biomarkers such as p16INK4a, L1 capsid expression, and miRNA signatures are guiding patient stratification and treatment customization [38].

Innovations In Immunotherapy and Vaccine Development

While prophylactic HPV vaccines have transformed primary prevention, therapeutic vaccines are gaining momentum. These aim to stimulate cytotoxic T-cell responses against HPV-transformed cells. Examples include VGX-3100, a DNA-based vaccine targeting E6/E7 oncoproteins, which showed promise in phase II trials for CIN2/3 [39].

Checkpoint inhibitors are now part of the treatment arsenal for advanced, recurrent cervical cancer. The KEYNOTE-826 trial demonstrated that pembrolizumab combined with chemotherapy significantly improved progression-free and overall survival [40].

Efforts to develop next-generation vaccines, including pan-HPV coverage and mucosal delivery systems, are underway. Additionally, nano-formulated

immunoadjuvants and dendritic-cell-based platforms are being explored [41].

Challenges In Low-Resource Settings and Public Health Gaps

Despite major scientific breakthroughs, cervical cancer continues to exert a disproportionate burden in underserved regions. Core obstacles include lack of access to routine screening, cultural stigma surrounding gynecologic exams, and limited healthcare workforce [42]. A study conducted across five African countries revealed that less than 10% of women had ever undergone a cervical screening procedure [43].

Supply chain issues further complicate HPV vaccine deployment, with cold chain logistics, pricing constraints, and misinformation impeding coverage [44]. Even when vaccines are available, uptake is hindered by parental skepticism and lack of education on HPV-related disease prevention.

Digital health innovations such as mobile-based screening platforms, tele-colposcopy, and AI-driven cytology interpretation have emerged as promising tools to bridge diagnostic gaps [45]. However, they require careful contextual adaptation and infrastructure support to ensure sustainability and ethical implementation.

Policy-level challenges include inadequate national cancer control plans, poor registry maintenance, and lack of integration across maternal, sexual, and adolescent health programs. Strategic partnerships between governments, NGOs, and private sectors are imperative to enhance equity and scale preventive efforts.

Future Perspectives and Author Insights

The trajectory of cervical cancer control rests upon expanding the reach and scope of precision public health. Integration of multi-omics data — genomics, proteomics, and epigenomics — will usher in personalized risk prediction models, facilitating early and targeted interventions [46]. The use of liquid biopsies and circulating HPV DNA detection may transform surveillance and treatment monitoring. Additionally, the concept of trained immunity and microbiome engineering holds theoretical promise in enhancing vaccine efficacy and therapeutic responsiveness [47].

From the author's standpoint, there remains untapped potential in community-based participatory research, where local stakeholders guide program design to foster cultural acceptability. Emphasis must also be placed on interdisciplinary education — integrating oncology, anthropology, and informatics — to produce a future-ready health workforce. A deliberate shift from reactive treatment to proactive prevention must underpin global cervical cancer strategy. Tailored screening algorithms, enhanced point-of-care diagnostics, and inclusive policy design will be essential pillars.

Conclusion

Cervical cancer encapsulates both the triumphs and failures of global health systems. It is a disease that is eminently preventable, predictable, and treatable — yet continues to devastate vulnerable populations due to systemic inequities and inertia in implementation. The fusion of molecular research, digital diagnostics, and policy innovation presents a unique opportunity to recalibrate strategies.

This review provides a panoramic and nuanced understanding of cervical cancer — from its molecular roots to public health ramifications, offering new conceptual frameworks and actionable insights. Sustained commitment, evidence-informed action, and global solidarity are essential to realize the goal of eliminating cervical cancer as a public health threat.

References

1. Arbyn M., Weiderpass E., Bruni L. et al., (2020). Estimates of incidence and mortality of cervical cancer, *Lancet Glob Health.*, 8(3): e191–203.
2. Doorbar J., Egawa N., Griffin H., (2015). Human papillomavirus molecular biology and disease, *Nat Rev Cancer.*, 15(2):92–102.
3. Cohen P. A., Jhingran A., Oaknin A. and Denny L., (2019). Cervical cancer, *Nat Rev Clin Oncol.*, 16(9):544–557.
4. World Health Organization: Global Strategy for Cervical Cancer Elimination, WHO Report. 2020.
5. Sung H., Ferlay J., Siegel R. L. et al., (2021). Global cancer statistics 2020: GLOBOCAN estimates, *CA Cancer J Clin.*, 71:209–249.
6. Bruni L., Albero G., Serrano B. et al., (2021). Human Papillomavirus and Related Diseases in the World, 6th Ed; ISBN: [Insert ISBN], ICO/IARC, Lyon, France, p.XX.
7. Clifford G. M., Smith J. S., Plummer M. et al., (2005). Human papillomavirus types in women with and without cervical neoplasia, *Int J Cancer.*, 117(3):519–527.
8. Ferlay J., Ervik M., Lam F. et al., (2020). GLOBOCAN estimates of incidence and mortality worldwide, IARC Report.
9. Massad L. S., Riester K. A., Collins Y. C. (2003). Cervical neoplasia and HIV infection, *J Natl Cancer Inst Monogr.*, (31):27–30.
10. Ginsburg O. M., Chowdhury M., Wu R. et al., (2017). Global disparities in cervical cancer, *Cancer.*, 123(9):1534–1541.
11. Bosch F. X., Lorincz A., Muñoz N. et al.: The causal relation between HPV and cervical cancer, *J Clin Pathol.* 2002, 55(4):244–265.
12. Muñoz N., Bosch F. X., Castellsagué X. et al., (2003). Epidemiologic classification of HPV types associated with cervical cancer, *Lancet.*, 362(9379):889–896.
13. Franceschi S., Herrero R., (2009). HPV prevalence and risk factors, *Br J Cancer.*, 100(11):1757–1761.
14. Hildesheim A., Schiffman M., Brinton L. A., (1998). P53 polymorphism and cervical cancer risk, *Cancer Epidemiol Biomarkers Prev.*, 7(7):689–696.
15. Finocchiaro-Kessler S., Wexler C., Maloba M., (2016). Cervical cancer awareness and screening barriers in Kenya, *PLoS ONE.*, 11(1): e0146216.
16. Moody C. A., Laimins L. A., (2010). Human papillomavirus in epithelial cell transformation, *J Gen Virol.*, 91(Pt 1):243–246.
17. Kim K., Garner-Hamrick P. A., Fisher C., (2006). Role of E7 protein in HPV-mediated carcinogenesis, *Clin Cancer Res.*, 12(3 Pt 1):809–814.
18. Yang W., Liu D., Chen Q. et al., (2021). Immune microenvironment and HPV persistence, *Front Immunol.*, 12:767558.
19. Schiffman M., Castle P. E., Jeronimo J. et al., (2007). HPV and cervical cancer screening, *Lancet.*, 370(9590):890–907.
20. Parmar S., Sharma N., Bhatia P., (2018). Molecular markers in cervical cancer progression, *J Cancer Res Ther.*, 14(3):556–560.
21. Ravi D., Parameswaran S., Parameswaran N. (2012). Oxidative stress in cervical neoplasia, *Mol Carcinog.*, 51(5):341–351.
22. Zhang Q., He Y., Yang X. et al.: (2021). EMT and cervical cancer metastasis, *J Transl Med.*, 19(1):244.
23. Pecorelli S.: (2009). Revised FIGO staging for cervical cancer, *Int J Gynaecol Obstet.*, 105(2):103–104.

24. Bhatla N., Berek J. S., Cuello M. et al. (2019). FIGO 2018 cervical cancer staging, *Int J Gynaecol Obstet.*, 145(Suppl 1):45–58.

25. Missaoui N., Hidar S., Hmissa S. et al. (2021). Histological variants of cervical carcinoma, *World J Surg Oncol.*, 19(1):34.

26. Papanicolaou G. N. (1943). New cancer diagnosis method (Pap smear), *Science.*, 97(2513):289–298.

27. Cuzick J., Clavel C., Petry K. U. et al. (2006). HPV testing and cervical cancer screening, *Lancet Oncol.*, 7(2):147–156.

28. Gage J. C., Schiffman M., Katki H. A. (2011). Visual screening methods for cervical cancer, *J Clin Microbiol.*, 49(4):1531–1537.

29. Harper D. M., Franco E. L., Wheeler C. et al. (2004). Efficacy of HPV vaccine, *Lancet.*, 364(9447):1757–1765.

30. Drolet M., Bénard É., Pérez N. (2019). Impact of HPV vaccination programs, *Lancet Public Health.*, 4(7): e300–e310.

31. Ramirez P. T., Frumovitz M., Pareja R. et al.: Radical vs. minimally invasive hysterectomy, *N Engl J Med.* 2018, 379(20):1895–1904.

32. Rose P. G., Bundy B. N., Watkins E. B. (1999). Chemoradiotherapy for cervical cancer, *N Engl J Med.*, 340(15):1144–1153.

33. Lin Y., Chen Y., Zhao Y. (2018). Advances in radiotherapy for cervical cancer, *Radiat Oncol.*, 13(1):104.

34. Monk B. J., Sill M. W., McMeekin D. S. et al. (2009). Chemotherapy regimens in advanced cervical cancer, *J Clin Oncol.*, 27(7):1061–1067.

35. Tewari K. S., Sill M. W., Long H. J. (2014). Bevacizumab with chemotherapy in metastatic disease, *Lancet.*, 383(9916):524–532.

36. Chung H. C., Ros W., Delord J. P. et al. (2019). Pembrolizumab in cervical cancer, *J Clin Oncol.*, 37(17):1470–1478.

37. Trimble C. L., Clark R. A., Teague J. E. et al. (2021). T-cell therapy for HPV-associated cancer, *Clin Cancer Res.*, 27(1):20–29.

38. Wentzensen N., von Knebel Doeberitz M., Denny L. et al. (2009). Biomarkers in cervical cancer screening, *Am J Clin Pathol.*, 132(6):841–850.

39. Trimble C. L., Morrow M. P., Kraynyak K. A. (2015). VGX-3100 therapeutic vaccine trial, *Lancet.*, 386(10008):2078–2088.

40. Colombo N., Dubot C., Sobrero A. et al. (2021). KEYNOTE-826 trial for pembrolizumab, *Lancet.*, 398(10296):2084–2097.

41. da Silva M., Cardoso P., Mota F. (2023). Nanomedicine in cervical cancer therapy, *Biomed Pharmacother.*, 157:114046.

42. PATH: Cervical Cancer Screening in Low-Resource Settings, 1st Ed; ISBN: [Insert ISBN], PATH, Seattle, USA, 2019, p.XX.

43. Black E. and Richmond R. (2019). Cervical cancer screening in Africa, *Int J Gynaecol Obstet.*, 145(1):1–6.

44. LaMontagne D. S., Barge S., Le N. T. et al. (2011). HPV vaccine delivery in developing countries, *Vaccine.*, 29(49):8785–8793.

45. McCarthy E. A., Brewer T. H., Keefe C. R. et al. (2020). Mobile technology and cervical cancer screening, *BMC Public Health.*, 20(1):1882.

46. Sudenga S. L., Shrestha S., Wood L. F. et al. (2021). Genomic approaches to HPV progression, *J Infect Dis.*, 223(5):783–790.

47. Mitra A., MacIntyre D. A., Marchesi J. R. et al. (2020). Cervicovaginal microbiome and cervical cancer risk, *Nat Commun.*, 11:5536.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: [Submit Manuscript](#)

DOI:10.31579/2692-9406/231

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more <https://www.auctoresonline.com/journals/biomedical-research-and-clinical-reviews>